深度学习--tensorflow
qq_43498494
这个作者很懒,什么都没留下…
展开
-
tensorflow第七天---深度学习
文章目录分布式的原理,架构,更新参数模式 分布式的原理,架构,更新参数模式 所有电脑服务器组成了集群。 老大创建好会话文件等后,之后与小弟都可以一起计算并用这个会话资源了。 不断调整过程。 同步模式更新参数过程:同步意思是说:若两个工作服务器计算速度不一样,有速度差异后就必须有个等待过程,只有两个工作服务器都计算好后,才将梯度变化量传入参数服务器中之后再去计算平均更新参数了。 异步更新参数模式:若3个工作服务器都进行各自有一批数据训练,工作1计算好后将梯度变化量直接传原创 2020-06-13 08:15:16 · 114 阅读 · 0 评论 -
tensorflow之深度学习-----第六天
文章目录复习验证码识别原理分析验证码识别程序流程以及图片数据的处理 复习 验证码识别原理分析 字母之间等距离,即分割简单。用一些库就可以达到分割目的。但是分割不是通用的方法,对于更多图片并不适用。若字母之间倒一点,离的近就无法分割了。所以对于神经网络来说分割是不必要的,我们可以整体识别他。 即类别有几千种甚至上万,所以会造成干扰。 此时一张图片就有4个目标值了,每个目标值假设有26种可能性。并不像之前狗图片最后只会得出识别出是狗即可。 字母用数字标记后,然后转换为独热编码。原创 2020-06-12 12:03:28 · 130 阅读 · 0 评论 -
tensorflow之深度学习-----第五天
文章目录卷积神经网络介绍以及卷积层结构激活层与池化层面试题分析 卷积神经网络介绍以及卷积层结构 一种特定的卷积结构:指定每一层怎么加,加的是什么层,经过这些层得到结果。 所以目的尽量减少最后一层全连接层的权重数量,因为是要线性方程求的。若是1000类别,即权重参数更多了。造成训练耗时间。此时可以在全连接层之前削减特征数量,只找出关键特征,之后全连接层就可以减少参数了。 所以输入以及输出结构怎么改,这就是CNN的灵活性,即基本结构是不变,只是将输出或者一些特定结构一改就可以做其他事情原创 2020-06-11 17:23:43 · 187 阅读 · 0 评论 -
tensorflow之深度学习-----第五天
文章目录感知机模型神经网络结构简单的神经网络实现手写数字图片识别 感知机模型 单个神经元 手获取杯子温度,传到大脑,神经元感觉温度过高放下杯子。 神经网络即也让算法模拟这个神经元过程。 一个感知机解决不了,再加上一个感知机就可以解决复杂问题了。 感知机与逻辑回归输入都是线性回归,但是感知机是通过阈值判断,而逻辑回归是通过激活函数求得一个0-1的概率进行判断。 神经网络结构 一种结构的神经网络是一种算法的统称。 对于图像识别有特原创 2020-06-11 08:30:33 · 121 阅读 · 0 评论 -
tensorflow之深度学习-----第四天
文章目录图像基本知识分析图片文件读取二进制文件读取分析![在这里插入图片描述](https://img-blog.csdnimg.cn/20200610080631308.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNDk4NDk0,size_16,color_FFFFFF,t_70)二进制文件读取tfrecords文件的读取与存储原创 2020-06-10 11:22:19 · 219 阅读 · 0 评论 -
tensorflow之深度学习-----第三天
文章目录tensorflow解决读取数据、实现同步模拟 tensorflow解决读取数据、实现同步模拟原创 2020-06-09 15:03:19 · 165 阅读 · 0 评论 -
tensorflow之深度学习---第二天
文章目录可视化学习注意:**所有的op都有name名称** 可视化学习 只有进行初始化操作之后,此时变量中var才真正有值了。 默认对于张量a,b在程序中没有用时,图中不显示。若定义的是变量即使不用也显示。 以下更新代码后会生成一个新的图结构。 注意:所有的op都有name名称 ...原创 2020-06-08 17:30:27 · 121 阅读 · 0 评论 -
Tensorflow之深度学习---第一天
文章目录tensorflow基本介绍安装Tensorflow安装Tensorflow01tensorflow图的结构分析Tensorflow框架数据流图结构的思想图 tensorflow基本介绍 0.12版本tensorflow可以可视化,像web界面一样,好用。 安装Tensorflow Tensorflow框架使用GPU很简单,只需要一行代码就可以搞定,不像之前要部署代码,需要一大堆配置文件,这里若你本地有一个GPU设备,在你的程序中指定一行代码,就可以了,就会自动用GPU计原创 2020-06-08 11:01:49 · 130 阅读 · 0 评论