题目描述
Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
Hanks 博士手里现在有N 种细胞,编号从1~N,一个第i 种细胞经过1 秒钟可以分裂为Si 个同种细胞(Si 为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入M 个试管,形成M 份样本,用于实验。Hanks 博士的试管数M 很大,普通的计算机的基本数据类型无法存储这样大的M 值,但万幸的是,M 总可以表示为m1 的m2 次方,即M = m1^ m2 ,其中m1,m2 均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有4 个细胞,Hanks 博士可以把它们分入2 个试管,每试管内2 个,然后开始实验。但如果培养皿中有5个细胞,博士就无法将它们均分入2 个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始,Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
输入描述
共有三行。
第一行有一个正整数 N,代表细胞种数。
第二行有两个正整数 m1,m2,以一个空格隔开, m1^ m2 即表示试管的总数M。
第三行有 N 个正整数,第i 个数Si 表示第i 种细胞经过1 秒钟可以分裂成同种细胞的个数。
输出描述
共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。
如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。
样例输入
1
2 1
3
样例输出
-1
数据范围及提示
经过 1 秒钟,细胞分裂成3 个,经过2 秒钟,细胞分裂成9 个,……,可以看出无论怎么分裂,细胞的个数都是奇数,因此永远不能分入2 个试管。
分析
这道题需要用到算术基本定理(整数的唯一分解定理)。
定理内容:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积
这里P1<P2<P3…<Pn均为质数,其中指数ai是正整数。
于是我们先将m1分解成其质因子的乘积,用数组p[i]存储质因子,数组a[i]存储相应的幂次,a[i]最后还要乘以m2,接着计算每一个s是否包含了m1的所有质因子,如果是,就用b存储s中对应的质因子的幂次,用a[i]/b(其中a[i]>b,i=1,2,3…n),并向上取整来计算最多需要几秒,最后再找到不同s最少需要的秒数。下面的题解参考了一位大神的做法。
#include<iostream>
#include<cmath>
using namespace std;
#define N 10000 + 10
#define INF 0x3f3f3f3f
int p[N],a[N];
int main()
{
int n,m1,m2,s;
cin >> n >> m1 >> m2;
//找到m1的质因子
int k = 0;
for(int i = 2; i * i <= m1; i++)
if(m1 % i == 0) {
p[k] = i;
while(m1 % i == 0) a[k]++,m1 /= i;
a[k] *= m2;
k++;
}
//当m1是质数
if(m1 > 1) {
p[k] = m1;
a[k] = m2;
k++;
}
int b,maxn,minn = INF;
bool flag;
for(int i = 0; i < n; i++) {
cin >> s;
flag = false;
for(int j = 0; j < k; j++)
if(s % p[j] != 0) {
flag = true;
break;
}
if(flag) continue;
//如果包含了所有的质因子
maxn = 0;
for(int j = 0; j < k; j++) {
b = 0;
while(s % p[j] == 0) b++,s /= p[j];
if(b < a[j]) maxn = max(maxn,int(ceil(1.0 * a[j] / b)));//向上取整
}
minn = min(minn,maxn);//找到不同s最少需要的秒数
}
if(minn == INF)
cout << -1 << endl;
else
cout << minn << endl;
return 0;
}