适合初步练习PAT乙级——(1079) 延迟的回文数

适合初步练习PAT乙级——(1079) 延迟的回文数

给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0。N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k−i​​。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C

其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152

输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例 2:
196

输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

#include<iostream>
#include<string>
#include<algorithm>
using namespace std;

string add(string a) {
	string b = a, ans;
	reverse(b.begin(), b.end());
	int len = a.length(), carry = 0;
	for (int i = 0; i < len; i++) {
		int num = (a[i] - '0' + b[i] - '0') + carry;
		carry = 0;
		if (num >= 10) {
			carry = 1;
			num = num - 10;
		}
		ans += char(num + '0');
	}
	if (carry == 1)ans += '1';
	reverse(ans.begin(), ans.end());
	return ans;
}

int main() {
	string s;
	cin >> s;
	int cnt = 0;
	while (cnt < 10) {
		string t = s;
		reverse(t.begin(), t.end());
		if (t == s) {
			cout << s << " is a palindromic number.";
			break;
		}
		else {
			cout << s << " + " << t << " = " << add(s) << endl;
			s = add(s);
			cnt++;
		}
	}
	if (cnt == 10)cout << "Not found in 10 iterations.";
	return 0;
}

思路:
1.将字符串倒置与原字符串比较看是否相等可知s是否为回文串
2.字符串s和它的倒置t相加,只需从头到尾相加然后再倒置,记得处理最后一位进位carry,如果有进位要在末尾+‘1’。
3.倒置可采用algorithm头文件里面的函数reverse(s.begin(),s,end())直接对s进行倒置。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值