(1)二叉树的节点定义
//普通二叉树的链式存储结点定义
typedef struct BTNode{
char data;
struct BTNode *lchild; //左孩子
struct BTNode *rchild; //右孩子
}BTNode;
//线索二叉树的结点定义
typedef struct TBTNode{
char data;
int ltag, rtag;
struct TBTNode *lchild; //左孩子
struct TBTNode *rchild; //右孩子
}TBTNode;
(2)二叉树的遍历算法
//先序遍历(递归)
void preorder(BTNode *p){
if(p != nullptr){ //一定要记得判空
printf("%c", p->data);
preorder(p->lchild);
preorder(p->rchild);
}
}
//中序遍历(递归)
void inorder(BTNode *p){
if(p != nullptr){ //一定要记得判空
inorder(p->lchild);
printf("%c", p->data);
inorder(p->rchild);
}
}
//后序遍历(递归)
void postorder(BTNode *p){
if(p != nullptr){ //一定要记得判空
postorder(p->lchild);
postorder(p->rchild);
printf("%c", p->data);
}
}
//层序遍历
void level(BTNode *p){
BTNode *que[maxSize];
BTNode *q = nullptr;
int front=0, rear=0; //定义一个循环队列
if(p != nullptr){
rear = (rear+1) % maxSize;
que[rear] = p; //根节点入队
while(front != rear){ //只要队不空,则进行循环
front = (front+1) % maxSize;
q = que[front]; //队头元素出队
printf("%d", q->data); //访问队头元素
if(q->lchild){ //左子树存在,则左子树根节点入队
rear = (rear+1) % maxSize;
que[rear] = q->lchild;
}
if(q->rchild){ //右子树存在,则右子树根节点入队
rear = (rear+1) % maxSize;
que[rear] = q->rchild;
}
}
}
}
//先序遍历(非递归)
void preorderNonrecursion(BTNode *bt){
if(bt != nullptr){
BTNode *Stack[maxSize];
int top = -1; //定义人工栈
Stack[++top] = bt; //根节点入栈
BTNode *p;
while(top != -1){ //判断不空
p = Stack[top--]; //出栈,并完成一次访问
printf("%c", p->data); //Visit(p);
if(p->rchild != nullptr){ //先序遍历一定是先右孩子,再左孩子
Stack[++top] = p->rchild;
}
if(p->lchild != nullptr){
Stack[++top] = p->lchild;
}
}
}
}
//中序遍历(非递归)
void inorderNonrecursion(BTNode *bt){
if(bt != nullptr){
BTNode *Stack[maxSize];
int top = -1; //定义人工栈
BTNode *p = NULL;
p = bt;
while(top!=-1 || p!=nullptr){
while(p != nullptr){
Stack[++top] = p;
p = p->lchild;
}
if(top != -1){
p = Stack[top--];
printf("%c\n",p->data); //Visit(p);
p = p->rchild;
}
}
}
}
//后序遍历(非递归)
void postorderNonrecursion(BTNode *bt){
if(bt != nullptr){
BTNode *Stack1[maxSize];int top1 = -1;
BTNode *Stack2[maxSize];int top2 = -1; //定义两个栈
BTNode *p = NULL;
Stack1[++top1] = bt;
while(top != -1){
p = Stack1[top1--];
Stack2[++top2] = p; //注意这里与先序的区别,放入栈2中即可
if(p->lchild){
Stack1[++top1] = p->lchild;
}
if(p->rchild){
Stack1[++top1] = p->rchild;
}
}
//这时候循环结束,则会将逆后序遍历的结果都存放到了栈2中
//所以对栈2进行输出即可得到后序遍历的结果
while(top2 != -1){
p = Stack[top2--];
printf("%c\n",p->data); //Visit(p);
}
}
}
本文详细介绍了二叉树的节点定义,包括普通二叉树和线索二叉树,并提供了先序、中序、后序和层序遍历的递归与非递归实现。重点展示了如何使用栈实现非递归遍历算法。
1354

被折叠的 条评论
为什么被折叠?



