【LeetCode 面试经典150题】172. Factorial Trailing Zeroes 阶乘后的零

172. Factorial Trailing Zeroes

题目大意

Given an integer n, return the number of trailing zeroes in n!.

Note that n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.

中文释义

给定一个整数 n,返回 n!n 的阶乘)的尾随零的个数。

注意 n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1

示例

示例 1:

输入: n = 3
输出: 0
解释: 3! = 6,没有尾随零。

示例 2:

输入: n = 5
输出: 1
解释: 5! = 120,有一个尾随零。

示例 3:

输入: n = 0
输出: 0

限制条件

  • 0 <= n <= 10^4

进阶

你能写出一个在对数时间复杂度内工作的解决方案吗?

解题思路

方法

该方法计算了阶乘数中因子 5 的个数,以此来确定尾随零的数量。

  1. 初始化计数器

    • 初始化一个计数器 five_count 来记录因子 5 的个数。
  2. 循环除以 5

    • n 大于或等于 5 时,循环继续。
    • 在每次迭代中,将 n 除以 5 并将商加到 five_count 上。
    • 更新 nn 除以 5 的商。
  3. 返回尾随零的个数

    • 返回 five_count 作为尾随零的个数。

代码

class Solution {
public:
    int trailingZeroes(int n) {
        int five_count = 0;
        while (n >= 5) {
            five_count += n/5;
            n /= 5;
        }
        return five_count;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值