B - LIS & LCS
东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
Input
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
Output
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
Examples
input
5 5
1 3 2 5 4
2 4 3 1 5
output
3 2
题目解析
题目要求求出对应的lis和lcs序列长度,主要的算法思想就是采用线性的动态规划。
- 选定状态,对于求解lis序列长度,选择dp[i]表示以a[i]为结尾的lis长度,对于求解lcs序列长度,选定dp1[i][j]表示a数组仅考虑前i个,b数组仅考虑前j个时lcs序列长度最大值
- 转移方程
//lis
dp[i] = max{dp[k]}+1(a[k]<a[i] && k<i)
//lcs
if a[i] = b[j]:
dp1[i][j] = dp1[i-1][j-1]+2
else :
dp1[i][j] = max{dp1[i][j-1],dp1[i-1][j]}
- 初始化,dp[1] = 1,dp1[0][0] = dp1[0][1] = dp[1][0] = 0
- 递推解决
完整代码
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 5100;
int n, m;
int a[maxn], b[maxn];
int dp[maxn],dp1[maxn][maxn];
int lis()
{
dp[0] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 0; j < i; j++)
{
if (dp[j] + 1 > dp[i] && a[i] > a[j])
dp[i] = dp[j] + 1;
}
}
int MAX = 1;
for (int i = 1; i <= n; i++)
if (MAX < dp[i])
MAX = dp[i];
return MAX;
}
int lcs()
{
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
if (a[i] == b[j])
dp1[i][j] = dp1[i - 1][j - 1] + 1;
else
dp1[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]);
}
return dp1[n][m];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> a[i];
for (int i = 1; i <= m; i++)
cin >> b[i];
cout << lis() << ' ' << lcs() << endl;
return 0;
}
note
- 这是一道样板题,对于动态规划,状态的选定十分重要,要有一部分经验
C-拿数问题
YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。 给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。
本题和课上讲的有些许不一样,但是核心是一样,需要你自己思考。
Input
第一行包含一个整数 n (1 ≤ n ≤ 105),表示数字里的元素的个数。第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 105)
Output
输出一个整数:n你能得到最大分值。
Examples
input
2
1 2
output
2
题目解析
- 采用的算法思想是将其转化为原本拿数问题,在采用动态规划解决
- 声明一个num数组,然后遍历所有整数,将相同的数加在一起,如对于a,num[a]+=a
- 按照拿数问题解决,dp[i] = max{dp[i-1],dp[i-2]+num[i]}
完整代码
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 10;
int n;
long long dp[maxn], sum[maxn];
int tmp;
int main()
{
cin >> n;
int Min = maxn, Max = 1;
for (int i = 1; i <= n; i++)
{
cin >> tmp;
if (tmp < Min)
Min = tmp;
if (tmp > Max)
Max = tmp;
sum[tmp] += (long long)tmp;
}
dp[Min] = sum[Min];
for (int i = Min+1; i <= Max; i++)
{
dp[i] = dp[i - 1];
if (dp[i - 2] + sum[i] > dp[i])
dp[i] = dp[i - 2] + sum[i];
}
cout << dp[Max] << endl;
return 0;
}