程序设计思维与实践 Week10 线性dp

B - LIS & LCS

东东有两个序列A和B。

他想要知道序列A的LIS和序列AB的LCS的长度。

注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。

Input

第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)

第二行n个数,表示序列A

第三行m个数,表示序列B

Output

输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度

Examples

input

5 5
1 3 2 5 4
2 4 3 1 5

output

3 2

题目解析

题目要求求出对应的lis和lcs序列长度,主要的算法思想就是采用线性的动态规划。

  1. 选定状态,对于求解lis序列长度,选择dp[i]表示以a[i]为结尾的lis长度,对于求解lcs序列长度,选定dp1[i][j]表示a数组仅考虑前i个,b数组仅考虑前j个时lcs序列长度最大值
  2. 转移方程
//lis
dp[i] = max{dp[k]}+1(a[k]<a[i] && k<i)
//lcs
if a[i] = b[j]:
dp1[i][j] = dp1[i-1][j-1]+2
else :
dp1[i][j] = max{dp1[i][j-1],dp1[i-1][j]}
  1. 初始化,dp[1] = 1,dp1[0][0] = dp1[0][1] = dp[1][0] = 0
  2. 递推解决

完整代码

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 5100;
int n, m;
int a[maxn], b[maxn];
int dp[maxn],dp1[maxn][maxn];
int lis()
{
	dp[0] = 0;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 0; j < i; j++)
		{
			if (dp[j] + 1 > dp[i] && a[i] > a[j])
				dp[i] = dp[j] + 1;
		}
	}
	int MAX = 1;
	for (int i = 1; i <= n; i++)
		if (MAX < dp[i])
			MAX = dp[i];
	return MAX;
}
int lcs()
{
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
		{
			if (a[i] == b[j])
				dp1[i][j] = dp1[i - 1][j - 1] + 1;
			else
				dp1[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]);
		}
	return dp1[n][m];
}
int main()
{
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
		cin >> a[i];
	for (int i = 1; i <= m; i++)
		cin >> b[i];
	cout << lis() << ' ' << lcs() << endl;
	return 0;
}

note

  1. 这是一道样板题,对于动态规划,状态的选定十分重要,要有一部分经验

C-拿数问题

YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。 给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。
本题和课上讲的有些许不一样,但是核心是一样,需要你自己思考。

Input

第一行包含一个整数 n (1 ≤ n ≤ 105),表示数字里的元素的个数。第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 105)

Output

输出一个整数:n你能得到最大分值。

Examples

input

2
1 2

output

2

题目解析

  1. 采用的算法思想是将其转化为原本拿数问题,在采用动态规划解决
  2. 声明一个num数组,然后遍历所有整数,将相同的数加在一起,如对于a,num[a]+=a
  3. 按照拿数问题解决,dp[i] = max{dp[i-1],dp[i-2]+num[i]}

完整代码

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 10;
int n;
long long dp[maxn], sum[maxn];
int tmp;
int main()
{
	cin >> n;
	int Min = maxn, Max = 1;
	for (int i = 1; i <= n; i++)
	{
		cin >> tmp;
		if (tmp < Min)
			Min = tmp;
		if (tmp > Max)
			Max = tmp;
		sum[tmp] += (long long)tmp;
	}
	dp[Min] = sum[Min];
	for (int i = Min+1; i <= Max; i++)
	{
		dp[i] = dp[i - 1];
		if (dp[i - 2] + sum[i] > dp[i])
			dp[i] = dp[i - 2] + sum[i];
	}
	cout << dp[Max] << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值