catalan数

catalan数应用

常见的应用如下:
1:括号化
矩阵连乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2:出栈次序
一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
h(n)
3:凸多边形三角划分
f(n) = h(n-1)
例如:f(6) = h(5) = 14

catalan数值

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …
设h(n)为catalan数的第n+1项,令h(0)=1,h(1)=1,catalan数满足递推式

h(n)= h(0)*h(n-1)+h(1)h(n-2) + … + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)h(1)+h(1)h(0)=11+11=2
h(3)=h(0)h(2)+h(1)h(1)+h(2)h(0)=12+11+21=5
另类递推式:
h(n)=h(n-1)
(4
n-2)/(n+1);
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,…)(本题采用)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)

catalan的题目

标准二维表
问题描述:设n是一个正整数,2n的标准二维表1,2,3,…,2n组成的2n的数组
该数组从左往右递增,每列从上到下递增。2*你的标准二维表全体标记为Tab(n)

123
456
123
456
125
346
134
256
135
246

输入:3
输出:5
想法:
可以想成非降阶路径不超过对角线
非降阶保证两行均为递增
不超对角线保证下面的大于上面的

#include <iostream>
using namespace std;
long getFactorial(int n){
    if(n==1||n==0)
        return 1;
    return n*getFactorial(n-1);
}
long getCatalan(int n){
    int m = n + 1;
    return getFactorial(2*n)/(getFactorial(n)*getFactorial(n)*m);
}
int main()
{
    int n;
    cin>>n;
    cout<<getCatalan(n)}

动态规划算法代码如下:

#include <iostream>
using namespace std;
long long h[40];//max_value = 9,223,372,036,854,775,807
void getCatalan(int n){
    h[0]=1;
    h[1]=1;
    for(int i=2;i<=n;i++)
        h[i]=h[i-1]*(4*i-2)/(i+1);
}
int main()
{
    int n;
    cin>>n;
    getCatalan(n);
    cout<<h[n-1]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值