catalan数应用
常见的应用如下:
1:括号化
矩阵连乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2:出栈次序
一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
h(n)
3:凸多边形三角划分
f(n) = h(n-1)
例如:f(6) = h(5) = 14
catalan数值
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …
设h(n)为catalan数的第n+1项,令h(0)=1,h(1)=1,catalan数满足递推式
h(n)= h(0)*h(n-1)+h(1)h(n-2) + … + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)h(1)+h(1)h(0)=11+11=2
h(3)=h(0)h(2)+h(1)h(1)+h(2)h(0)=12+11+21=5
另类递推式:
h(n)=h(n-1)(4n-2)/(n+1);
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,…)(本题采用)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)
catalan的题目
标准二维表
问题描述:设n是一个正整数,2n的标准二维表1,2,3,…,2n组成的2n的数组
该数组从左往右递增,每列从上到下递增。2*你的标准二维表全体标记为Tab(n)
1 | 2 | 3 |
---|---|---|
4 | 5 | 6 |
1 | 2 | 3 |
---|---|---|
4 | 5 | 6 |
1 | 2 | 5 |
---|---|---|
3 | 4 | 6 |
1 | 3 | 4 |
---|---|---|
2 | 5 | 6 |
1 | 3 | 5 |
---|---|---|
2 | 4 | 6 |
输入:3
输出:5
想法:
可以想成非降阶路径不超过对角线
非降阶保证两行均为递增
不超对角线保证下面的大于上面的
#include <iostream>
using namespace std;
long getFactorial(int n){
if(n==1||n==0)
return 1;
return n*getFactorial(n-1);
}
long getCatalan(int n){
int m = n + 1;
return getFactorial(2*n)/(getFactorial(n)*getFactorial(n)*m);
}
int main()
{
int n;
cin>>n;
cout<<getCatalan(n);
}
动态规划算法代码如下:
#include <iostream>
using namespace std;
long long h[40];//max_value = 9,223,372,036,854,775,807
void getCatalan(int n){
h[0]=1;
h[1]=1;
for(int i=2;i<=n;i++)
h[i]=h[i-1]*(4*i-2)/(i+1);
}
int main()
{
int n;
cin>>n;
getCatalan(n);
cout<<h[n-1]<<endl;
}