NLP论文速读(斯坦福大学)|生成式奖励模型(Generative Reward Models)

论文速读|Generative Reward Models

论文信息:

图片

简介:

      这篇论文探讨了如何提高现代大型语言模型(LLMs)的性能,特别是在强化学习从人类反馈(RLHF)过程中的效率和效果。RLHF方法虽然有效,但它需要大量的人类偏好数据来训练奖励模型,这不仅资源密集,而且技术上具有挑战性。此外,现有的基于人工智能的反馈(RLAIF)方法虽然可以解决数据收集问题,但它们生成的合成偏好标签可能与人类偏好判断不一致。因此,论文旨在解决如何有效地结合RLHF和RLAIF的优势,以改善合成偏好标签的质量,并提高LLMs的决策质量。动机在于现有的RLHF方法需要大量的人工标注数据,这限制了模型训练的规模和速度。同时,RLAIF虽然提供了一种替代方案,但其生成的偏好标签可能不完全符合人类的判断。为了克服这些限制,本文提出了一种混合方法,通过结合RLHF和RLAIF的方法,利用LLM自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值