论文速读|Generative Reward Models
论文信息:
简介:
这篇论文探讨了如何提高现代大型语言模型(LLMs)的性能,特别是在强化学习从人类反馈(RLHF)过程中的效率和效果。RLHF方法虽然有效,但它需要大量的人类偏好数据来训练奖励模型,这不仅资源密集,而且技术上具有挑战性。此外,现有的基于人工智能的反馈(RLAIF)方法虽然可以解决数据收集问题,但它们生成的合成偏好标签可能与人类偏好判断不一致。因此,论文旨在解决如何有效地结合RLHF和RLAIF的优势,以改善合成偏好标签的质量,并提高LLMs的决策质量。动机在于现有的RLHF方法需要大量的人工标注数据,这限制了模型训练的规模和速度。同时,RLAIF虽然提供了一种替代方案,但其生成的偏好标签可能不完全符合人类的判断。为了克服这些限制,本文提出了一种混合方法,通过结合RLHF和RLAIF的方法,利用LLM自