排列逆序数的期望

题目:
随机生成 1 ∼ n 1\sim n 1n的排列,求逆序数的期望。

思路:
f ( i , j ) f(i,j) f(i,j)表示 i , j i,j i,j对排列的逆序数产生的贡献,则逆序数 X = ∑ i , j f ( i , j ) X=\sum_{i,j}f(i,j) X=i,jf(i,j)
E ( X ) = E ( ∑ i , j f ( i , j ) ) = ∑ i , j E ( f ( i , j ) ) = ∑ i , j 1 2 = n ( n − 1 ) 4 \begin{aligned} E(X)&=E(\sum_{i,j}f(i,j))\\ &=\sum_{i,j}E(f(i,j))\\ &=\sum_{i,j}\frac{1}{2}\\ &=\frac{n(n-1)}{4} \end{aligned} E(X)=E(i,jf(i,j))=i,jE(f(i,j))=i,j21=4n(n1)

### 对非递减顺序整数数组的操作 对于已经按非递减顺序排列的整数数组,通常不需要执行额外的排序算法来重新排序这些数据。然而,在某些情况下可能需要验证其有序性或是进行其他特定操作。 #### 验证数组是否为非递减排列 为了确认给定的数组确实是以非递减方式排列,可以遍历整个列表并比较相邻元素: ```python def is_non_decreasing(arr): for i in range(len(arr) - 1): if arr[i] > arr[i + 1]: return False return True ``` 如果上述函数返回 `True` ,则表示输入数组是非递减序列;反之,则不是。 #### 插入新元素到已排序数组中保持非递减特性 当向一个已经是非递减顺序的数组插入一个新的数值时,应该找到合适的位置使得插入之后仍然维持原有的顺序属性: ```python import bisect def insert_into_sorted_array(sorted_arr, value): position = bisect.bisect_right(sorted_arr, value) sorted_arr.insert(position, value) return sorted_arr ``` 此代码片段利用 Python 的内置模块 `bisect` 来高效定位待插值应放置的确切位置,并将其加入原数组内而不破坏整体结构[^1]. #### 处理逆序情况下的优化措施 考虑到冒泡排序在处理完全倒序的数据集时会达到最大交换次数的情况,即当初始状态是严格升序而目标是要转换成降序时会发生最坏性能表现。因此,针对这种情况可以通过简单的反转操作快速获得期望的结果而不是采用低效的传统排序方法: ```python def reverse_to_descending(arr): return arr[::-1] ``` 这种方法仅需 O(n) 时间复杂度即可完成任务,远优于常规排序所需的 O(n log n),特别是对于大型数据集合而言效率提升显著.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值