莱布尼茨求导公式

莱布尼茨公式

f ( n ) f^{(n)} f(n)表示对函数 f f f n n n次导,则有
( f ∗ g ) n = ∑ i = 0 n ( n i ) f ( i ) g ( n − i ) (f*g)^n=\sum_{i=0}^{n}{n\choose i}f^{(i)}g^{(n-i)} (fg)n=i=0n(in)f(i)g(ni)

证明

h ( i , j ) h(i,j) h(i,j)表示 f ( i ) g ( j ) f^{(i)}g^{(j)} f(i)g(j)的系数, h ( 0 , 0 ) = 1 h(0,0)=1 h(0,0)=1,则有递推式
h ( i , j ) = h ( i − 1 , j ) + h ( i , j − 1 ) h(i,j)=h(i-1,j)+h(i,j-1) h(i,j)=h(i1,j)+h(i,j1)
f ( i − 1 ) g ( j ) f^{(i-1)}g^{(j)} f(i1)g(j) f ( i ) g ( j − 1 ) f^{(i)}g^{(j-1)} f(i)g(j1)求导后会得到 f ( i ) g ( j ) f^{(i)}g^{(j)} f(i)g(j),所以系数有贡献。
这个递推式可以用组合数学推出,有
h ( i , j ) = ( i + j j ) h(i,j)={i+j\choose j} h(i,j)=(ji+j)
还有一点很明显就是,如果求 n n n次导,则 i + j = n i+j=n i+j=n,所以就有
( f ∗ g ) n = ∑ i = 0 n ( n i ) f ( i ) g ( n − i ) (f*g)^n=\sum_{i=0}^{n}{n\choose i}f^{(i)}g^{(n-i)} (fg)n=i=0n(in)f(i)g(ni)

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页