BZOJ 2243 [SDOI2011] 染色(树剖 + 线段树)

12 篇文章 0 订阅
11 篇文章 0 订阅

Description
给定一棵有 n n n个节点的无根树和 m m m个操作,操作有2类:
1、将节点 a a a到节点 b b b路径上所有点都染成颜色 c c c
2、询问节点 a a a到节点 b b b路径上的颜色段数量(连续相同颜色被认为是同一段),
如“ 112221 112221 112221”由3段组成:“ 11 11 11”、“ 222 222 222”和“ 1 1 1”。
请你写一个程序依次完成这 m m m个操作。

Input
第一行包含2个整数 n n n m m m,分别表示节点数和操作数;
第二行包含 n n n个正整数表示 n n n个节点的初始颜色
下面 行每行包含两个整数 x x x y y y,表示 x x x y y y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点 a a a到节点 b b b路径上所有点(包括 a a a b b b)都染成颜色 c c c
“Q a b”表示这是一个询问操作,询问节点 a a a到节点 b b b(包括 a a a b b b)路径上的颜色段数量。

Output
对于每个询问操作,输出一行答案。

Sample Input
6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
3
1
2

Hint
N < = 1 0 5 N<=10^5 N<=105,操作数 M < = 1 0 5 M<=10^5 M<=105,所有的颜色C为整数且在 [ 0 , 1 0 9 ] [0, 10^9] [0,109]之间。

Solution
看题意很明显树剖+线段树

线段树部分:
线段树除了维护区间内的颜色段数,还需要储存区间左端点的颜色和右端点的颜色,这样才能正确合并区间贡献
自然还需要lazy tag 来做区间修改

树剖部分:
一条重链内的答案可以通过线段树内的处理计算,但重链和重链之间因为序号不连续,所以无法通过线段树来计算
容易发现,重链转移时的 fa[top[u]] 和 top[u] 就是两次区间查询时的相邻端点,从而实现了两种情况的区间贡献合并

Code

#include <bits/stdc++.h>
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;

typedef long long ll;
const int MX = 2e5 + 7;

int n;
int ecnt,head[MX];
int w[MX],wt[MX];

struct Edge{
    int v,next;
}e[MX << 1];

void add(int u,int v){
    e[++ecnt].v = v;e[ecnt].next = head[u];head[u] = ecnt;
    e[++ecnt].v = u;e[ecnt].next = head[v];head[v] = ecnt;
}

struct Segtree{
    int l,r;
    int sum;
    int lc,rc;//区间左右端点颜色
    int lazy;
}t[MX << 2];

void push_up(int rt){
    t[rt].sum = t[ls].sum + t[rs].sum - (t[ls].rc == t[rs].lc);
    t[rt].lc = t[ls].lc, t[rt].rc = t[rs].rc;
}

void build(int rt,int l,int r){
    t[rt].l = l, t[rt].r = r;
    t[rt].lazy = -1;
    if(l == r){
        t[rt].sum = 1;
        t[rt].lc = t[rt].rc = wt[l];
        return ;
    }
    int mid = (l + r) >> 1;
    build(ls,l,mid);build(rs,mid+1,r);
    push_up(rt);
}

void push_down(int rt){
    if(t[rt].lazy != -1){
        int col = t[rt].lazy;
        t[ls].sum = 1; t[ls].lazy = col; t[ls].lc = t[ls].rc = col;
        t[rs].sum = 1; t[rs].lazy = col; t[rs].lc = t[rs].rc = col;
        t[rt].lazy = -1;
    }
}

void update(int rt,int L,int R,int k){
    int l = t[rt].l, r = t[rt].r;
    if(L <= l && r <= R){
        t[rt].sum = 1;
        t[rt].lc = t[rt].rc = k;
        t[rt].lazy = k;
        return ;
    }
    push_down(rt);
    int mid = (l + r) >> 1;
    if(L <= mid) update(ls,L,R,k);
    if(R  > mid) update(rs,L,R,k);
    push_up(rt);
}

int nowl;//跨重链合并区间贡献
int query(int rt,int L,int R){
    int l = t[rt].l, r = t[rt].r;
    if(L <= l && r <= R){
        if(L == l) nowl = t[rt].lc;
        return t[rt].sum;
    }
    push_down(rt);
    int mid = (l + r) >> 1, res = 0;
    if(L <= mid) res += query(ls,L,R);
    if(R  > mid) res += query(rs,L,R);
    if(L <= mid && R > mid){
        if(t[ls].rc == t[rs].lc) res--;
    }
    return res;
}

int siz[MX],son[MX],top[MX],dep[MX],fa[MX],id[MX],cnt;

void dfs1(int u,int f,int deep){
    siz[u] = 1, fa[u] = f,dep[u] = deep;
    int maxson = -1;
    for(int i = head[u];i;i = e[i].next){
        int v = e[i].v;
        if(v == f) continue;
        dfs1(v,u,deep+1);
        siz[u] += siz[v];
        if(siz[v] > maxson) maxson = siz[v], son[u] = v;
    }
}

void dfs2(int u,int topf){
    id[u] = ++cnt, wt[cnt] = w[u], top[u] = topf;
    if(!son[u]) return ;
    dfs2(son[u],topf);
    for(int i = head[u];i;i = e[i].next){
        int v = e[i].v;
        if(v == fa[u] || v == son[u]) continue;
        dfs2(v,v);
    }
}

void updRange(int u,int v,int k){
    while(top[u] != top[v]){
        if(dep[top[u]] < dep[top[v]]) swap(u,v);
        update(1,id[top[u]],id[u],k);
        u = fa[top[u]];
    }
    if(dep[u] > dep[v]) swap(u,v);
    update(1,id[u],id[v],k);
}

int qRange(int u,int v){
    int res = 0;
    while(top[u] != top[v]){
        if(dep[top[u]] < dep[top[v]]) swap(u,v);
        res += query(1,id[top[u]],id[u]);
        //跨重链合并区间贡献
        int now = nowl;
        int tmp = query(1,id[fa[top[u]]],id[fa[top[u]]]);
        int nx = nowl;
        if(nx == now) res--;
        u = fa[top[u]];
    }
    if(dep[u] > dep[v]) swap(u,v);
    res += query(1,id[u],id[v]);
    return res;
}

int main(){
    int q;
    scanf("%d%d",&n,&q);
    for(int i = 1;i <= n;++i) scanf("%d",&w[i]);
    for(int i = 1;i < n;++i) {
        int u,v;scanf("%d%d",&u,&v);add(u,v);
    }
    dfs1(1,-1,1);dfs2(1,1);
    build(1,1,n);
    while(q--){
        char op[4];scanf("%s",op);
        if(op[0] == 'C'){
            int u,v,k;scanf("%d%d%d",&u,&v,&k);
            updRange(u,v,k);
        } else if(op[0] == 'Q'){
            int u,v;scanf("%d%d",&u,&v);
            int res = qRange(u,v); printf("%d\n", res);
        }
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值