2020 ICPC Asia Taipei-Hsinchu Site H. Optimization for UltraNet(二分+最小生成树)

Description
在这里插入图片描述

Solution
首先意识到这是一个最小生成树问题,但需要先满足所选边权值最小值最大,所以我们可以二分这个最小值,再用kruskal来check是否能成树
然而最后需要计算任意两点路径上最小边权的和,貌似可以暴力水过去

Code

#include <bits/stdc++.h>
using namespace std;
#define pb push_back
typedef long long ll;
const ll inf=1e18+10;
const int maxn = 1e4 + 7;
const int maxm = 5e5 + 7;
int n,m;
int fa[maxn];
int find(int x){return x == fa[x] ? x:fa[x] = find(fa[x]);}
struct Edge{
	int u,v;
	ll w;
}edge[maxm<<1];
bool cmp(Edge x, Edge y) {
	return x.w < y.w;
}
inline void init() {
	for(int i = 1;i <= n;++i) fa[i] = i;
}
bool check(int lim) {
	if(m - lim + 1 < n - 1) return false;
	int cnt = 0;init();
	for(int i = lim;i <= m;++i) {
		int u = edge[i].u, v = edge[i].v, w = edge[i].w;
		int f1 = find(u), f2 = find(v);
		if(f1 == f2) continue;
		fa[f1] = f2;
		cnt++;
	}
	return cnt == n - 1;
}
struct node{
	int u,v;
	ll w;
	int next;
}e[maxn<<1];
int ecnt,head[maxn<<1];
inline void add(int u,int v,ll w) {
	e[++ecnt] = (node) {u,v,w,head[u]}, head[u] = ecnt;
}
void build(int lim) {
	int cnt = 0;init();
	for(int i = lim;i <= m;++i) {
		int u = edge[i].u, v = edge[i].v, w = edge[i].w;
		int f1 = find(u), f2 = find(v);
		if(f1 == f2) continue;
		fa[f1] = f2;
		cnt++;
		add(u,v,w);add(v,u,w);
		// debug2(u,v);
		if(cnt == n - 1) break;
	}
}

ll siz[maxn], dis[maxn];
ll sum = 0, res = 0;

inline ll MIN(ll x,ll y){
	return x < y ? x : y;
}
void dfs(int u,int f) {
	for(int i = head[u];i;i = e[i].next)
	{
		int v=e[i].v;
		if (v==f) continue;
		ll w=e[i].w;
		dis[v]=MIN(dis[u],w);
		sum+=dis[v];
		dfs(v,u);
	}
}

int main(int argc, char const *argv[]) {
	scanf("%d %d",&n,&m);
	for(int i = 1,u,v,w;i <= m;++i) {
		scanf("%d %d %d",&u,&v,&w);
		edge[i] = (Edge){u,v,w};
	}sort(edge+1,edge+1+m,cmp);
	int l = 1, r = m, mid, ans = 0;
	while(l <= r) {
		mid = (l + r) >> 1;
		if(check(mid)){l = mid + 1;ans = mid;}
		else r = mid - 1;
	}
	build(ans);
	for (int i=1; i<=n; i++){
		dis[i]=inf;
		dfs(i,-1);
		res+=sum;
		sum=0;
	}
	printf ("%lld\n",res/2);
	return 0;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值