机器学习基础、sklearn数据集、转换器与预估器

机器学习基础

  1. 机器学习开发流程
  2. 机器学习算法分类
  3. 机器学习模型是什么

需要明确几点问题:

  1. 算法是核心,数据和计算是基础

  2. 找准定位

    大部分复杂模型的算法设计都是算法工程师在做,而我只是一个调包侠

    • 分析很多的数据
    • 分析具体的业务
    • 应用常见的算法
    • 特征工程、调参数、优化

我们应该怎么做

  1. 学会分析问题,使用机器学习算法的目的,想要算法完成何种任务
  2. 掌握算法基本思想,学会对问题用相应的算法解决
  3. 学会利用库或者框架解决问题

机器学习模型是什么

定义:通过一种映射关系将输入值到输出值

机器学习算法的判别依据

我们来看看下面两组数据,说说它们的区别?

数据类型

  • 离散型数据:由记录不同类别个体的数目所得到的数据,又称计数数据,所有这些数据全部都是整数,而且不能再细分,也不能进一步提高他们的精确度。

  • 连续型数据:变量可以在某个范围内取任一数,即变量的取值可以是连续的,如,长度、时间、质量值等,这类整数通常是非整数,含有小数部分。

注:只要记住一点,离散型是区间内不可分,连续型是区间内可分

数据类型的不同应用

数据的类型将是机器学习模型不同问题不同处理的依据?

图片识别

分析文章类别

预测下月票房数据

机器学习算法分类

监督学习:特征值 + 目标值

非监督学习:特征值

分类:目标值离散型

回归:目标值连续型

  • 监督学习

  • 分类

    • k-邻近算法
    • 贝叶斯分类
    • 决策树与随机森林
    • 逻辑回归
    • 神经网络
  • 回归

    • 线性回归
    • 岭回归
  • 标注

    • 隐马尔可夫模型
  • 无监督学习

    • 聚类
      • k-means

监督学习

监督学习(英语:Supervised Learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。

无监督学习

无监督学习(英语:Unsupervised Learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值所组成。

分类问题

分类问题

概念:分类是监督学习的一个核心问题,在监督学习中,当输出变量取有限个离散值时,预测问题变成为分类问题。最基础的便是二分类问题,即判断是非,从两个类别中选择一个作为预测结果。

分类问题的应用

分类在于根据其特性将数据“分门别类”,所以在许多领域都有广泛的应用

  • 分类在于根据其特性将数据“分门别类”,所以在许多领域都有广泛的应用
  • 在银行业务中,构建一个客户分类模型,按客户按照贷款风险的大小进行分类
  • 图像处理中,分类可以用来检测图像中是否有人脸出现,动物类别等
  • 手写识别中,分类可以用于识别手写的数字
  • 文本分类,这里的文本可以是新闻报道、网页、电子邮件、学术论文

回归问题

回归问题

概念:回归是监督学习的另一个重要问题。回归用于预测输入变量和输出变量之间的关系,输出是连续型的值。

回归问题的应用

回归在多领域也有广泛的应用

  • 房价预测,根据某地历史房价数据,进行一个预测
  • 金融信息,每日股票走向

说一下它们具体问题类别:

  1. 预测明天的气温是多少度? 回归问题
  2. 预测明天是阴、晴还是雨? 分类问题
  3. 人脸年龄预测? 回归问题
  4. 人脸识别? 分类问题

机器学习开发流程

数据:

  1. 公司本身就有数据
  2. 合作过来的数
  3. 购买的数据

建立模型:根据数据类型划分应用种类

  1. 原始数据明确问题做什么

  2. 数据的基本处理:pd去处理数据(缺失值,合并表…)

  3. 特征工程(特征进行处理)

    分类、回归

    模型:算法 + 数据

  4. 找到合适的算法进行预测

  5. 模型的评估,判断效果

    1. 没有合格:
      1. 换算法 参数
      2. 特征工程
    2. 合格:上线使用,以API形式提供

机器学习开发流程

sklearn数据集

  1. 数据集划分

  2. sklearn数据集接口介绍

  3. sklearn分类数据集

  4. sklearn回归数据集

评估模型和建立模型的数据能不能一模一样? 不能!!!!!

拿一部分数据去训练,拿一些未知数据去评估

所以数据分为两大部分

训练集和测试集,他们一般的划分比例:

训练集测试集
70%30%
80%20%
75%25%

数据集划分

机器学习一般的数据集会划分为两个部分:

  • 训练数据:用于训练,构建模型

  • 测试数据:在模型检验时使用,用于评估模型是否有效

sklearn数据集划分API

sklearn.model_selection.train_test_split

那么问题来了,自己准备数据集,耗时耗力,不一定真实

scikit-learn数据集API介绍

sklearn.datasets

  • 加载获取流行数据集

datasets.load_*()

  • 获取小规模数据集,数据包含在datasets里

datasets.fetch_*(data_home=None)

  • 获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/

获取数据集返回的类型

  • load和fetch返回的数据类型datasets.base.Bunch(字典格式)

  • data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组

  • target:标签数组,是 n_samples 的一维 numpy.ndarray 数组

  • DESCR:数据描述

  • feature_names:特征名,新闻数据,手写数字、回归数据集没有

  • target_names:标签名,回归数据集没有

sklearn分类数据集

我们来看一下sklearn返回的数据格式

sklearn.datasets.load_iris() 加载并返回鸢尾花数据集

名称数量
类别3
特征4
样本数量150
每个类别数量50

sklearn.datasets.load_digits() 加载并返回数字数据集

名称数量
类别10
特征64
样本数量1797
from sklearn.datasets import load_iris


li = load_iris()

print("获取特征值")
print(li.data)

print("目标值")
print(li.target)
print(li.DESCR)

运行结果

获取特征值
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]
 [5.4 3.9 1.7 0.4]
 [4.6 3.4 1.4 0.3]
 [5.  3.4 1.5 0.2]
 [4.4 2.9 1.4 0.2]
 [4.9 3.1 1.5 0.1]
 [5.4 3.7 1.5 0.2]
 [4.8 3.4 1.6 0.2]
 [4.8 3.  1.4 0.1]
 [4.3 3.  1.1 0.1]
 [5.8 4.  1.2 0.2]
 [5.7 4.4 1.5 0.4]
 [5.4 3.9 1.3 0.4]
 [5.1 3.5 1.4 0.3]
 [5.7 3.8 1.7 0.3]
 [5.1 3.8 1.5 0.3]
 [5.4 3.4 1.7 0.2]
 [5.1 3.7 1.5 0.4]
 [4.6 3.6 1.  0.2]
 [5.1 3.3 1.7 0.5]
 [4.8 3.4 1.9 0.2]
 [5.  3.  1.6 0.2]
 [5.  3.4 1.6 0.4]
 [5.2 3.5 1.5 0.2]
 [5.2 3.4 1.4 0.2]
 [4.7 3.2 1.6 0.2]
 [4.8 3.1 1.6 0.2]
 [5.4 3.4 1.5 0.4]
 [5.2 4.1 1.5 0.1]
 [5.5 4.2 1.4 0.2]
 [4.9 3.1 1.5 0.2]
 [5.  3.2 1.2 0.2]
 [5.5 3.5 1.3 0.2]
 [4.9 3.6 1.4 0.1]
 [4.4 3.  1.3 0.2]
 [5.1 3.4 1.5 0.2]
 [5.  3.5 1.3 0.3]
 [4.5 2.3 1.3 0.3]
 [4.4 3.2 1.3 0.2]
 [5.  3.5 1.6 0.6]
 [5.1 3.8 1.9 0.4]
 [4.8 3.  1.4 0.3]
 [5.1 3.8 1.6 0.2]
 [4.6 3.2 1.4 0.2]
 [5.3 3.7 1.5 0.2]
 [5.  3.3 1.4 0.2]
 [7.  3.2 4.7 1.4]
 [6.4 3.2 4.5 1.5]
 [6.9 3.1 4.9 1.5]
 [5.5 2.3 4.  1.3]
 [6.5 2.8 4.6 1.5]
 [5.7 2.8 4.5 1.3]
 [6.3 3.3 4.7 1.6]
 [4.9 2.4 3.3 1. ]
 [6.6 2.9 4.6 1.3]
 [5.2 2.7 3.9 1.4]
 [5.  2.  3.5 1. ]
 [5.9 3.  4.2 1.5]
 [6.  2.2 4.  1. ]
 [6.1 2.9 4.7 1.4]
 [5.6 2.9 3.6 1.3]
 [6.7 3.1 4.4 1.4]
 [5.6 3.  4.5 1.5]
 [5.8 2.7 4.1 1. ]
 [6.2 2.2 4.5 1.5]
 [5.6 2.5 3.9 1.1]
 [5.9 3.2 4.8 1.8]
 [6.1 2.8 4.  1.3]
 [6.3 2.5 4.9 1.5]
 [6.1 2.8 4.7 1.2]
 [6.4 2.9 4.3 1.3]
 [6.6 3.  4.4 1.4]
 [6.8 2.8 4.8 1.4]
 [6.7 3.  5.  1.7]
 [6.  2.9 4.5 1.5]
 [5.7 2.6 3.5 1. ]
 [5.5 2.4 3.8 1.1]
 [5.5 2.4 3.7 1. ]
 [5.8 2.7 3.9 1.2]
 [6.  2.7 5.1 1.6]
 [5.4 3.  4.5 1.5]
 [6.  3.4 4.5 1.6]
 [6.7 3.1 4.7 1.5]
 [6.3 2.3 4.4 1.3]
 [5.6 3.  4.1 1.3]
 [5.5 2.5 4.  1.3]
 [5.5 2.6 4.4 1.2]
 [6.1 3.  4.6 1.4]
 [5.8 2.6 4.  1.2]
 [5.  2.3 3.3 1. ]
 [5.6 2.7 4.2 1.3]
 [5.7 3.  4.2 1.2]
 [5.7 2.9 4.2 1.3]
 [6.2 2.9 4.3 1.3]
 [5.1 2.5 3.  1.1]
 [5.7 2.8 4.1 1.3]
 [6.3 3.3 6.  2.5]
 [5.8 2.7 5.1 1.9]
 [7.1 3.  5.9 2.1]
 [6.3 2.9 5.6 1.8]
 [6.5 3.  5.8 2.2]
 [7.6 3.  6.6 2.1]
 [4.9 2.5 4.5 1.7]
 [7.3 2.9 6.3 1.8]
 [6.7 2.5 5.8 1.8]
 [7.2 3.6 6.1 2.5]
 [6.5 3.2 5.1 2. ]
 [6.4 2.7 5.3 1.9]
 [6.8 3.  5.5 2.1]
 [5.7 2.5 5.  2. ]
 [5.8 2.8 5.1 2.4]
 [6.4 3.2 5.3 2.3]
 [6.5 3.  5.5 1.8]
 [7.7 3.8 6.7 2.2]
 [7.7 2.6 6.9 2.3]
 [6.  2.2 5.  1.5]
 [6.9 3.2 5.7 2.3]
 [5.6 2.8 4.9 2. ]
 [7.7 2.8 6.7 2. ]
 [6.3 2.7 4.9 1.8]
 [6.7 3.3 5.7 2.1]
 [7.2 3.2 6.  1.8]
 [6.2 2.8 4.8 1.8]
 [6.1 3.  4.9 1.8]
 [6.4 2.8 5.6 2.1]
 [7.2 3.  5.8 1.6]
 [7.4 2.8 6.1 1.9]
 [7.9 3.8 6.4 2. ]
 [6.4 2.8 5.6 2.2]
 [6.3 2.8 5.1 1.5]
 [6.1 2.6 5.6 1.4]
 [7.7 3.  6.1 2.3]
 [6.3 3.4 5.6 2.4]
 [6.4 3.1 5.5 1.8]
 [6.  3.  4.8 1.8]
 [6.9 3.1 5.4 2.1]
 [6.7 3.1 5.6 2.4]
 [6.9 3.1 5.1 2.3]
 [5.8 2.7 5.1 1.9]
 [6.8 3.2 5.9 2.3]
 [6.7 3.3 5.7 2.5]
 [6.7 3.  5.2 2.3]
 [6.3 2.5 5.  1.9]
 [6.5 3.  5.2 2. ]
 [6.2 3.4 5.4 2.3]
 [5.9 3.  5.1 1.8]]
目标值
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]
.. _iris_dataset:

Iris plants dataset
--------------------

**Data Set Characteristics:**

    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica
                
    :Summary Statistics:

    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
    ============== ==== ==== ======= ===== ====================

    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. topic:: References

   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...

数据集进行分割

sklearn.model_selection.train_test_split(*arrays, **options)

  • x 数据集的特征值

  • y 数据集的标签值

  • test_size 测试集的大小,一般为float

  • random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。

  • return 训练集特征值,测试集特征值,训练标签,测试标签(默认随机取)

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

li = load_iris()

# 注意返回值,训练集 train  x_train, y_train
#           测试集 test   x_test,  y_test
x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)

print("训练集特征值和目标值:", x_train, y_train)
print("测试集特征值和目标值:", x_test, y_test)

运行结果

训练集特征值和目标值: [[6.4 2.9 4.3 1.3]
 [4.3 3.  1.1 0.1]
 [5.5 2.4 3.8 1.1]
 [6.2 3.4 5.4 2.3]
 [6.1 3.  4.9 1.8]
 [5.7 3.8 1.7 0.3]
 [6.3 2.3 4.4 1.3]
 [4.6 3.4 1.4 0.3]
 [6.5 3.  5.5 1.8]
 [5.4 3.9 1.7 0.4]
 [5.1 3.4 1.5 0.2]
 [6.  2.7 5.1 1.6]
 [5.1 3.3 1.7 0.5]
 [4.9 2.5 4.5 1.7]
 [6.7 3.3 5.7 2.1]
 [7.7 3.8 6.7 2.2]
 [5.8 2.6 4.  1.2]
 [6.7 3.  5.  1.7]
 [6.3 3.3 4.7 1.6]
 [5.  3.3 1.4 0.2]
 [5.8 2.8 5.1 2.4]
 [6.9 3.2 5.7 2.3]
 [5.6 2.8 4.9 2. ]
 [4.7 3.2 1.3 0.2]
 [5.9 3.2 4.8 1.8]
 [5.9 3.  4.2 1.5]
 [6.7 3.1 5.6 2.4]
 [4.4 3.2 1.3 0.2]
 [5.1 3.8 1.6 0.2]
 [4.8 3.1 1.6 0.2]
 [5.4 3.9 1.3 0.4]
 [5.1 3.8 1.9 0.4]
 [5.4 3.4 1.5 0.4]
 [5.1 3.8 1.5 0.3]
 [5.6 2.9 3.6 1.3]
 [6.5 3.2 5.1 2. ]
 [5.  3.5 1.6 0.6]
 [7.2 3.6 6.1 2.5]
 [7.  3.2 4.7 1.4]
 [4.9 2.4 3.3 1. ]
 [6.3 2.9 5.6 1.8]
 [6.4 2.8 5.6 2.1]
 [6.1 3.  4.6 1.4]
 [6.3 3.3 6.  2.5]
 [6.6 3.  4.4 1.4]
 [5.6 3.  4.1 1.3]
 [6.3 2.5 4.9 1.5]
 [6.  2.2 4.  1. ]
 [5.3 3.7 1.5 0.2]
 [6.8 2.8 4.8 1.4]
 [4.8 3.  1.4 0.3]
 [4.8 3.4 1.6 0.2]
 [7.2 3.  5.8 1.6]
 [5.5 4.2 1.4 0.2]
 [5.5 2.6 4.4 1.2]
 [7.2 3.2 6.  1.8]
 [5.5 3.5 1.3 0.2]
 [4.6 3.2 1.4 0.2]
 [6.  2.9 4.5 1.5]
 [4.9 3.1 1.5 0.1]
 [5.4 3.  4.5 1.5]
 [5.  2.3 3.3 1. ]
 [6.3 2.5 5.  1.9]
 [5.8 2.7 5.1 1.9]
 [6.9 3.1 5.4 2.1]
 [6.7 3.3 5.7 2.5]
 [6.  3.  4.8 1.8]
 [5.2 4.1 1.5 0.1]
 [7.9 3.8 6.4 2. ]
 [4.8 3.4 1.9 0.2]
 [7.4 2.8 6.1 1.9]
 [5.  3.4 1.5 0.2]
 [4.8 3.  1.4 0.1]
 [6.  3.4 4.5 1.6]
 [6.7 3.  5.2 2.3]
 [5.7 4.4 1.5 0.4]
 [7.1 3.  5.9 2.1]
 [7.3 2.9 6.3 1.8]
 [5.7 2.9 4.2 1.3]
 [6.4 3.1 5.5 1.8]
 [6.4 2.7 5.3 1.9]
 [5.4 3.7 1.5 0.2]
 [5.7 2.8 4.5 1.3]
 [6.3 2.8 5.1 1.5]
 [6.3 3.4 5.6 2.4]
 [4.6 3.1 1.5 0.2]
 [5.8 2.7 4.1 1. ]
 [6.4 2.8 5.6 2.2]
 [6.7 3.1 4.7 1.5]
 [5.8 2.7 5.1 1.9]
 [6.2 2.2 4.5 1.5]
 [5.1 3.7 1.5 0.4]
 [4.9 3.  1.4 0.2]
 [6.5 2.8 4.6 1.5]
 [5.5 2.5 4.  1.3]
 [5.8 4.  1.2 0.2]
 [5.6 3.  4.5 1.5]
 [5.  3.2 1.2 0.2]
 [7.7 2.8 6.7 2. ]
 [5.7 3.  4.2 1.2]
 [5.4 3.4 1.7 0.2]
 [7.7 2.6 6.9 2.3]
 [6.4 3.2 5.3 2.3]
 [5.5 2.3 4.  1.3]
 [5.2 3.4 1.4 0.2]
 [4.6 3.6 1.  0.2]
 [5.1 3.5 1.4 0.2]
 [5.  3.5 1.3 0.3]
 [6.1 2.8 4.7 1.2]
 [5.8 2.7 3.9 1.2]
 [7.6 3.  6.6 2.1]
 [6.6 2.9 4.6 1.3]] [1 0 1 2 2 0 1 0 2 0 0 1 0 2 2 2 1 1 1 0 2 2 2 0 1 1 2 0 0 0 0 0 0 0 1 2 0
 2 1 1 2 2 1 2 1 1 1 1 0 1 0 0 2 0 1 2 0 0 1 0 1 1 2 2 2 2 2 0 2 0 2 0 0 1
 2 0 2 2 1 2 2 0 1 2 2 0 1 2 1 2 1 0 0 1 1 0 1 0 2 1 0 2 2 1 0 0 0 0 1 1 2
 1]
测试集特征值和目标值: [[6.7 2.5 5.8 1.8]
 [6.1 2.6 5.6 1.4]
 [6.1 2.9 4.7 1.4]
 [6.8 3.2 5.9 2.3]
 [5.  3.6 1.4 0.2]
 [5.6 2.5 3.9 1.1]
 [6.8 3.  5.5 2.1]
 [4.9 3.1 1.5 0.2]
 [4.9 3.6 1.4 0.1]
 [6.5 3.  5.8 2.2]
 [4.5 2.3 1.3 0.3]
 [6.4 3.2 4.5 1.5]
 [5.  3.4 1.6 0.4]
 [6.2 2.8 4.8 1.8]
 [6.7 3.1 4.4 1.4]
 [4.7 3.2 1.6 0.2]
 [5.2 2.7 3.9 1.4]
 [5.1 2.5 3.  1.1]
 [6.3 2.7 4.9 1.8]
 [5.6 2.7 4.2 1.3]
 [6.9 3.1 4.9 1.5]
 [6.1 2.8 4.  1.3]
 [5.7 2.5 5.  2. ]
 [6.5 3.  5.2 2. ]
 [4.4 2.9 1.4 0.2]
 [4.4 3.  1.3 0.2]
 [6.9 3.1 5.1 2.3]
 [5.1 3.5 1.4 0.3]
 [5.2 3.5 1.5 0.2]
 [6.  2.2 5.  1.5]
 [7.7 3.  6.1 2.3]
 [5.  3.  1.6 0.2]
 [5.7 2.8 4.1 1.3]
 [5.7 2.6 3.5 1. ]
 [5.5 2.4 3.7 1. ]
 [5.9 3.  5.1 1.8]
 [5.  2.  3.5 1. ]
 [6.2 2.9 4.3 1.3]] [2 2 1 2 0 1 2 0 0 2 0 1 0 2 1 0 1 1 2 1 1 1 2 2 0 0 2 0 0 2 2 0 1 1 1 2 1
 1]

用于分类的大数据集

sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)

  • subset: ‘train’或者’test’,‘all’,可选,选择要加载的数据集.

    训练集的“训练”,测试集的“测试”,两者的“全部”

datasets.clear_data_home(data_home=None)

  • 清除目录下的数据
from sklearn.datasets import fetch_20newsgroups

news = fetch_20newsgroups(subset='all')

print(news.data)
print(news.target)

这个会有几千个几万个样本……不展示了

sklearn回归数据集

sklearn.datasets.load_boston() 加载并返回波士顿房价数据集

sklearn.datasets.load_diabetes() 加载和返回糖尿病数据集

from sklearn.datasets import load_boston

li = load_iris()

lb = load_boston()
print("获取特征值")
print(lb.data)

print("目标值")
print(lb.target)
print(lb.DESCR)

运行结果

获取特征值
[[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01 3.9690e+02 4.9800e+00]
 [2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9690e+02 9.1400e+00]
 [2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9283e+02 4.0300e+00]
 ...
 [6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 5.6400e+00]
 [1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9345e+02 6.4800e+00]
 [4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 7.8800e+00]]
目标值
[24.  21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15.  18.9 21.7 20.4
 18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
 18.4 21.  12.7 14.5 13.2 13.1 13.5 18.9 20.  21.  24.7 30.8 34.9 26.6
 25.3 24.7 21.2 19.3 20.  16.6 14.4 19.4 19.7 20.5 25.  23.4 18.9 35.4
 24.7 31.6 23.3 19.6 18.7 16.  22.2 25.  33.  23.5 19.4 22.  17.4 20.9
 24.2 21.7 22.8 23.4 24.1 21.4 20.  20.8 21.2 20.3 28.  23.9 24.8 22.9
 23.9 26.6 22.5 22.2 23.6 28.7 22.6 22.  22.9 25.  20.6 28.4 21.4 38.7
 43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
 18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22.  20.3 20.5 17.3 18.8 21.4
 15.7 16.2 18.  14.3 19.2 19.6 23.  18.4 15.6 18.1 17.4 17.1 13.3 17.8
 14.  14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
 17.  15.6 13.1 41.3 24.3 23.3 27.  50.  50.  50.  22.7 25.  50.  23.8
 23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
 37.9 32.5 26.4 29.6 50.  32.  29.8 34.9 37.  30.5 36.4 31.1 29.1 50.
 33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50.  22.6 24.4 22.5 24.4 20.
 21.7 19.3 22.4 28.1 23.7 25.  23.3 28.7 21.5 23.  26.7 21.7 27.5 30.1
 44.8 50.  37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29.  24.  25.1 31.5
 23.7 23.3 22.  20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
 29.6 42.8 21.9 20.9 44.  50.  36.  30.1 33.8 43.1 48.8 31.  36.5 22.8
 30.7 50.  43.5 20.7 21.1 25.2 24.4 35.2 32.4 32.  33.2 33.1 29.1 35.1
 45.4 35.4 46.  50.  32.2 22.  20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
 21.7 28.6 27.1 20.3 22.5 29.  24.8 22.  26.4 33.1 36.1 28.4 33.4 28.2
 22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21.  23.8 23.1
 20.4 18.5 25.  24.6 23.  22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
 19.5 18.5 20.6 19.  18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
 22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25.  19.9 20.8 16.8
 21.9 27.5 21.9 23.1 50.  50.  50.  50.  50.  13.8 13.8 15.  13.9 13.3
 13.1 10.2 10.4 10.9 11.3 12.3  8.8  7.2 10.5  7.4 10.2 11.5 15.1 23.2
  9.7 13.8 12.7 13.1 12.5  8.5  5.   6.3  5.6  7.2 12.1  8.3  8.5  5.
 11.9 27.9 17.2 27.5 15.  17.2 17.9 16.3  7.   7.2  7.5 10.4  8.8  8.4
 16.7 14.2 20.8 13.4 11.7  8.3 10.2 10.9 11.   9.5 14.5 14.1 16.1 14.3
 11.7 13.4  9.6  8.7  8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
 14.1 13.  13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20.  16.4 17.7
 19.5 20.2 21.4 19.9 19.  19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
 16.7 12.  14.6 21.4 23.  23.7 25.  21.8 20.6 21.2 19.1 20.6 15.2  7.
  8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
 22.  11.9]
.. _boston_dataset:

Boston house prices dataset
---------------------------

**Data Set Characteristics:**  

    :Number of Instances: 506 

    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.

    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's

    :Missing Attribute Values: None

    :Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/


This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression
problems.   
     
.. topic:: References

   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.


转换器与预估器

转换器

想一下之前做的特征工程的步骤?

1、实例化 (实例化的是一个转换器类(Transformer))

2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

转换器

fit_transform(): 输入数据直接转换 = fit() + transform()

fit(): 输入数据,但不做事情

transform(): 进行数据的转换

In [1]: from sklearn.preprocessing import StandardScaler

In [2]: s = StandardScaler()

In [3]: s.fit_transform([[1, 2, 3], [4, 5, 6]])
Out[3]: 
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

In [4]: ss = StandardScaler()

In [5]: ss.fit([[1, 2, 3], [4, 5, 6]])
Out[5]: StandardScaler(copy=True, with_mean=True, with_std=True)

In [6]: ss.transform([[1, 2, 3], [4, 5, 6]])
Out[6]: 
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

In [7]: ss.fit([[2, 3, 4], [4, 5, 7]])
Out[7]: StandardScaler(copy=True, with_mean=True, with_std=True)

In [8]: ss.transform([[1, 2, 3], [4, 5, 6]])
Out[8]: 
array([[-2.        , -2.        , -1.66666667],
       [ 1.        ,  1.        ,  0.33333333]])

估计器

sklearn机器学习算法的实现-估计器

在sklearn中,估计器(estimator)是一个重要的角色,分类器和回归器都属于estimator,是一类实现了算法的API

  1. 用于分类的估计器:

    • sklearn.neighbors k 近邻算法
    • sklearn.naive_bayes 贝叶斯
    • sklearn.linear_model.LogisticRegression 逻辑回归
  2. 用于回归的估计器

    • sklearn.linear_model.LinearRegression 线性回归
    • sklearn.linear_model.Ridg 岭回归

其实机器学习开发的门槛还是高一些的。这些API并不是像Web开发那些API一样,看文档就知道怎么用,比如对接支付宝或微信的支付接口,文档上写的很清楚……但是这些API看了也不知道要传哪些参数, 所以算法还是要搞懂的。

估计器的工作流程

训练集 x_train, y_train

测试集 x_test, y_test

  1. 调用fit
    • fit(x_train, y_train)
  2. 输入测试集的数据(x_test, y_test)
    1. y_predict = predict(x_test)
    2. 预测的准确率:score(x_test, y_test)

在这里插入图片描述


“我在人间贩卖黄昏,只为收集世间的温柔去见你”
Macsen Chu

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论

打赏作者

Macsen Chu

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值