SAS 学习笔记(七)— SAS与回归分析

本文是SAS学习笔记的第七部分,主要探讨回归分析。内容包括回归预备分析,如计算相关系数和绘制散点图;线性回归分析使用REG和GLM过程步;变量选择策略,特别是多项式回归的处理;曲线回归的讨论;以及回归诊断,如多重共线性的判别。
摘要由CSDN通过智能技术生成

回归预备分析

计算相关系数
(pearson, spearman, kendall)相关系数衡量变量之间的线性相关性

proc corr data=数据集名;
	var 变量名列;
	with 变量名列;
	partial 变量名列;  //去除某因素影响后计算的偏相关系数
	by 变量名列;
run;

<options>
pearson (默认)
spearman
kendall
nosimple 不进行简单描述统计

绘制散点图
plot 或 gplot过程步


线性回归分析

REG / GLM 过程步的回归分析

proc REG data=;    //也可以用 GLM 过程步
	MODEL 因变量=自变量名列 / <options1>;
	ID 变量名;
	PLOT y*x / <options2>
	OUTPUT out=数据集名 关键统计量名=输出名;
SYMNOLn cv=点的颜色 ci
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值