unsupervised learning最常见的两个用途,分别是clustering和generation。
clustering的一种方法是k等分,具体方法如下图。

还有一种方法是层次聚类。
大概方法是把找到所有数据中最接近的两个,算出它们的平均数并用它替代原来的两数据,循环迭代直到根节点。
这样建立了一个多层的树,根据不同的标准可以分出不的类。比如用红线分割,则123为一类,45为另一类;用蓝线分割,则12,3,45各为一类。

unsupervised learning最常见的两个用途,分别是clustering和generation。
clustering的一种方法是k等分,具体方法如下图。

还有一种方法是层次聚类。
大概方法是把找到所有数据中最接近的两个,算出它们的平均数并用它替代原来的两数据,循环迭代直到根节点。
这样建立了一个多层的树,根据不同的标准可以分出不的类。比如用红线分割,则123为一类,45为另一类;用蓝线分割,则12,3,45各为一类。

196
422

被折叠的 条评论
为什么被折叠?