2021-10-17 4.10

#  贪婪算法
def epsilon_greedy_policy(q, epsilon, nA):
    def __policy__(state):
        A_ = np.ones(nA, dtype=float)  # 初始化动作概率
        A = A_ * epsilon / nA  # 以epsilon设定动作概率
        best = np.argmax(q[state])  # 选取动作值函数中的最大值作为最优值
        A[best] += 1 - epsilon
        return A
    return __policy__()

# 固定策略的非起始点探索的蒙特卡洛控制
def mc_firstvisit_control_epsilon_greedy(env, num_episodes=100, epsilon=0.1, episode_endtime=10, discount=1.0):
    nA = env.action_space.n  # 环境中的状态对应动作空间数量
    Q = defaultdict(lambda: np.zeros(nA))  # 动作值函数
    r_sum = defaultdict(float)  # 状态-动作对的累计奖励
    r_cou = defaultdict(float)  # 状态-动作对的计数器
    policy = epsilon_greedy_policy(Q, epsilon, nA)  # 初始化贪婪策略
    for i in range(num_episodes):
        episode = []
        state = env.reset()
        for j in range(episode_endtime):  # 经验轨迹产生
            action_prob = policy(state)  # 通过贪婪算法对状态动作对进行探索和利用
            action = np.random.choice(np.arange(action_prob.shape[0]), p=action_prob)  # 根据动作概率选取动作
            next_state, reward, done, _ = env.step(action)
            episode.append((state, action, reward))
            if done:
                break
            state = next_state
        for k, (state, actions, reward) in enumerate(episode):
            sa_pair = (state, action)  # 提取状态-动作对
            first_visit_idx = k
            G = sum([x[2]*np.power(discount, i) for i, x in enumerate(episode[first_visit_idx:])])  # 计算未来累计奖励
            r_sum[sa_pair] += G  # 更新未来累计奖励
            r_cou[sa_pair] += 1  # 更新计数器
            Q[state][actions] = r_sum[sa_pair] / r_cou[sa_pair]  # 计算平均累计奖励
    return Q```

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值