例子源于OpenCV官网–直方图的比较(https://docs.opencv.org/4.x/d8/dc8/tutorial_histogram_comparison.html)
使用函数cv::compareHist获得一个数值参数,表示两个直方图之间的匹配程度。
使用不同的度量来比较直方图
下述代码的功能:
1.加载一个基本图像和2个测试图像与它进行比较。
2.生成1个图像,即基础图像的下半部分
3.将图像转换为HSV格式
4.计算所有图像的H-S直方图,并将其归一化,以便进行比较。
5.将基准图像的直方图与2个测试直方图、下半基准图像的直方图和相同基准图像的直方图进行比较。
6.显示数值匹配参数获得。
代码:
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
#加载基本图片(src_base)和其他两个测试图片:
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.',default='Base_0.png')
parser.add_argument('--input2', help='Path to input image 2.',default='Test_1.png')
parser.add_argument('--input3', help='Path to input image 3.',default='Test_2.png')
args = parser.parse_args()
src_base = cv.imread(args.input1)
src_test1 = cv.imread(args.input2)
src_test2 = cv.imread(args.input3)
if src_base is None or src_test1 is None or src_test2 is None:
print('Could not open or find the images!')
exit(0)
#将它们转换为HSV格式:
hsv_base = cv.cvtColor(src_base, cv.COLOR_BGR2HSV)
hsv_test1 = cv.cvtColor(src_test1, cv.COLOR_BGR2HSV)
hsv_test2 = cv.cvtColor(src_test2, cv.COLOR_BGR2HSV)
#同时,创建一个一半的基础图像(在HSV格式):
hsv_half_down = hsv_base[hsv_base.shape[0]//2:,:]
#初始化参数来计算直方图(容器、范围和通道H和S)。
h_bins = 50
s_bins = 60
histSize = [h_bins, s_bins]
# hue varies from 0 to 179, saturation from 0 to 255
h_ranges = [0, 180]#色相从0到179
s_ranges = [0, 256]#饱和度从0到255
ranges = h_ranges + s_ranges # concat lists
# Use the 0-th and 1-st channels
channels = [0, 1]#使用第0和第1通道
#计算基图、2张测试图和半边基图的直方图:
hist_base = cv.calcHist([hsv_base], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_base, hist_base, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
hist_half_down = cv.calcHist([hsv_half_down], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_half_down, hist_half_down, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
hist_test1 = cv.calcHist([hsv_test1], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_test1, hist_test1, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
hist_test2 = cv.calcHist([hsv_test2], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_test2, hist_test2, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
#依次应用base图(hist_base)的直方图与其他直方图的4种比较方法:
for compare_method in range(4):
base_base = cv.compareHist(hist_base, hist_base, compare_method)
base_half = cv.compareHist(hist_base, hist_half_down, compare_method)
base_test1 = cv.compareHist(hist_base, hist_test1, compare_method)
base_test2 = cv.compareHist(hist_base, hist_test2, compare_method)
print('Method:', compare_method, 'Perfect, Base-Half, Base-Test(1), Base-Test(2) :',\
base_base, '/', base_half, '/', base_test1, '/', base_test2)
输入图像:
base_0.jpg:
test_1.jpg:
test_2.jpg:
运行结果:
即:
方法 Base - Base Base - Half Base - Test 1 Base - Test 2
相关性 1.00 0.88136 0.21350 0.07761
Chi-square 0.00 4.68028 2697.95 4761.87
Intersection 19.08360 13.1833 5.66333 2.77067
Bhattacharyya 0.00 0.23650 0.67493 0.87004
当我们将基本图像直方图与它本身进行比较时,应该会有一个完美的匹配(1.00)。此外,与一半的基础图像的直方图相比,它应该是一个高匹配(0.88),因为两者来自同一源。对于另外两个测试图,我们可以观察到它们的光照条件非常不同,所以匹配应该不是很好(0.21与0.07)。