【LeetCode】第208题——实现Trie(前缀树)(难度:中等)

本文详细介绍了LeetCode第208题——实现Trie(前缀树),包括数据结构的定义、插入、搜索和前缀检查功能。通过实例展示了如何使用Trie进行单词存储和检索,讨论了解题思路并提供了相关代码实现。
摘要由CSDN通过智能技术生成

【LeetCode】第208题——实现Trie(难度:中等)

题目描述

Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

  • Trie() 初始化前缀树对象。
  • void insert(String word) 向前缀树中插入字符串 word 。
  • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
  • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
  1. 示例1:
    输入
    [“Trie”, “insert”, “search”, “search”, “startsWith”, “insert”, “search”]
    [[], [“apple”], [“apple”], [“app”], [“app”], [“app”], [“app”]]
    输出
    [null, null, true, false, true, null, true]
    解释
    Trie trie = new Trie();
    trie.insert(“apple”);
    trie.search(“apple”); // 返回 True
    trie.search(“app”); // 返回 False
    trie.startsWith(“app”); // 返回 True
    trie.insert(“app”);
    trie.search(“app”); // 返回 True

提示:
1 <= word.length, prefix.length <= 2000
word 和 prefix 仅由小写英文字母组成
insert、search 和 startsWith 调用次数 总计 不超过 3 * 104 次

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/implement-trie-prefix-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路

以单词的每个字符作为节点,节点有一个isExist属性,作为是否存在此单词的判断依据,如apple,会在字母e节点给isExist赋它值,如此一来若查找app这个单词就不会认为该单词存在

代码详解

class Trie {
   

    Node node; // Node类体见代码最下方

    /** Initialize your data structure here. */
    public Trie() {
   
        node = new Node(); // 新建根节点
        node.isExist = true; // 根节点isExist为true
    }
    
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值