题目描述
Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
- Trie() 初始化前缀树对象。
- void insert(String word) 向前缀树中插入字符串 word 。
- boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
- boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
- 示例1:
输入
[“Trie”, “insert”, “search”, “search”, “startsWith”, “insert”, “search”]
[[], [“apple”], [“apple”], [“app”], [“app”], [“app”], [“app”]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert(“apple”);
trie.search(“apple”); // 返回 True
trie.search(“app”); // 返回 False
trie.startsWith(“app”); // 返回 True
trie.insert(“app”);
trie.search(“app”); // 返回 True
提示:
1 <= word.length, prefix.length <= 2000
word 和 prefix 仅由小写英文字母组成
insert、search 和 startsWith 调用次数 总计 不超过 3 * 104 次
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/implement-trie-prefix-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
以单词的每个字符作为节点,节点有一个isExist属性,作为是否存在此单词的判断依据,如apple,会在字母e节点给isExist赋它值,如此一来若查找app这个单词就不会认为该单词存在
代码详解
class Trie {
Node node; // Node类体见代码最下方
/** Initialize your data structure here. */
public Trie() {
node = new Node(); // 新建根节点
node.isExist = true; // 根节点isExist为true
}