题目链接
有旋Treap见此
可持续化情况
题意
您需要写一种数据结构,来维护一些数,其中需要提供以下操作:
case 1: 插入
x
x
x数
case 2: 删除
x
x
x数(若有多个相同的数,因只删除一个)
case 3: 查询
x
x
x数的排名(排名定义为比当前数小的数的个数
+
1
+1
+1)
case 4: 查询排名为
x
x
x的数
case 5: 求
x
x
x的前驱(前驱定义为小于
x
x
x,且最大的数)
case 6: 求
x
x
x的后继(后继定义为大于
x
x
x,且最小的数)
这就是一个模板题,这里提供一个链接,讲述非常详细,如下链接
实测可以过的
\color{purple}{\text{实测可以过的}}
实测可以过的
代码(有作用注释)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cctype>
#include <map>
#include <set>
#include <vector>
#include <iostream>
#include <cmath>
#define pk putchar(' ')
#define ph puts("")
#pragma GCC optimize(2)
using namespace std;
typedef long long ll;
template <class T>
void rd(T &x)
{
x = 0;
int f = 1;
char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
x *= f;
}
template <class T>
void pt(T x)
{
if (x < 0)
putchar('-'), x = (~x) + 1;
if (x > 9)
pt(x / 10);
putchar(x % 10 ^ 48);
}
template <class T>
T Max(T a, T b)
{
return a > b ? a : b;
}
template <class T>
T Min(T a, T b)
{
return a < b ? a : b;
}
using namespace std;
const int INF = 0x3f3f3f3f, N = 1e5 + 5;
int n;
struct Node
{
int val, key, siz, l ,r;
void clear()
{
val = key = siz = l = r = 0;
}
};
struct Treapnode
{
Node t[N];
int tot, root;
void update(int now)
{
t[now].siz = t[t[now].l].siz + t[t[now].r].siz + 1;
}
// 更新
int merge(int u, int v)
{
if (!u || !v)
return u | v;
if (t[u].key < t[v].key)
{
t[u].r = merge(t[u].r, v);
update(u);
return u;
}
else
{
t[v].l = merge(u, t[v].l);
update(v);
return v;
}
}
// 合并
void split_val(int now, int k, int& x, int& y)
{
if (!now)
return (void)(x = y = 0);
if (t[now].val <= k)
x = now, split_val(t[now].r, k, t[now].r, y);
else
y = now, split_val(t[now].l, k, x, t[now].l);
update(now);
}
// 按权值大小拆分
void split_k(int now, int k, int& x, int& y)
{
if (!now)
return (void)(x = y = 0);
update(now);
if (t[t[now].l].siz < k)
x = now, split_k(t[now].r, k - t[t[now].l].siz - 1, t[now].r, y);
else
y = now, split_k(t[now].l, k, x, t[now].l);
update(now);
}
// 按排名大小拆分
void ins(int x)
{
int u, a, b;
t[u = ++tot].key = rand();
t[u].val = x, t[u].siz = 1;
split_val(root, x, a, b);
root = merge(merge(a, u), b);
}
// 插入x
void del(int x)
{
int a ,b ,c ,d;
split_val(root, x - 1, a, b);
split_k(b, 1, c, d);
t[c].clear();
root = merge(a, d);
}
// 删除x
int get_rank(int x)
{
int a, b, c;
split_val(root, x - 1, a, b);
c = t[a].siz + 1;
root = merge(a, b);
return c;
}
// 得到x的排名
int get_val(int& now, int x)
{
int a, b, c, d, e;
split_k(now, x - 1, a, b);
split_k(b, 1, c, d);
e = t[c].val;
now = merge(a, merge(c, d));
return e;
}
// 以root为根的找第x的值
int pre(int x)
{
int a, b, c;
split_val(root, x - 1, a, b);
c = get_val(a, t[a].siz);
root = merge(a, b);
return c;
}
// 找前驱
int sub(int x)
{
int a, b, c;
split_val(root, x, a, b);
c = get_val(b, 1);
root = merge(a, b);
return c;
}
// 找后缀
}Treap;
int main()
{
rd(n);
int opt, x;
while(n--)
{
rd(opt), rd(x);
switch(opt)
{
case 1: Treap.ins(x); break;
case 2: Treap.del(x); break;
case 3: pt(Treap.get_rank(x)), ph; break;
case 4: pt(Treap.get_val(Treap.root, x)), ph; break;
case 5: pt(Treap.pre(x)), ph; break;
case 6: pt(Treap.sub(x)), ph; break;
}
}
return 0;
}