BZOJ 3224 Treap平衡树

题目链接

题意:

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
1. 插入x数
2. 删除x数(若有多个相同的数,因只删除一个)
3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x,且最大的数)
6. 求x的后继(后继定义为大于x,且最小的数)

思路:

Treap平衡树模板题

C++代码:

#include<bits/stdc++.h>
using namespace std;
typedef double DB;
typedef long long LL;
typedef complex<double>CD;
const int maxn = 100010;

struct Treap
{
    struct node
    {
        int l,r;
        int v,rnd;
        int sizes,w;
    }tr[maxn];
    int sizes,root,ans;
    void Init()
    {
        sizes = root = 0;
    }
    int Random()
    {
        static int seed = 703;
        return seed = (int)(seed*48271LL%2147483647);
    }
    void Update( int k )
    {
        tr[k].sizes = tr[tr[k].l].sizes+tr[tr[k].r].sizes+tr[k].w;
    }
    void Right_rotate( int &k )
    {
        int t = tr[k].l;
        tr[k].l = tr[t].r;
        tr[t].r = k;
        tr[t].sizes = tr[k].sizes;
        Update( k );
        k = t;
    }
    void Left_rotate( int &k )
    {
        int t = tr[k].r;
        tr[k].r = tr[t].l;
        tr[t].l = k;
        tr[t].sizes = tr[k].sizes;
        Update( k );
        k = t;
    }
    void Insert( int &k , int x )
    {
        if ( k==0 )
        {
            k = ++sizes;
            tr[k].sizes = tr[k].w = 1;
            tr[k].v = x;
            tr[k].rnd = Random();
            tr[k].l = tr[k].r = 0;
            return;
        }
        tr[k].sizes++;
        if ( x==tr[k].v )
            tr[k].w++;
        else if ( x<tr[k].v )
        {
            Insert( tr[k].l , x );
            if ( tr[tr[k].l].rnd<tr[k].rnd )
                Right_rotate( k );
        }
        else
        {
            Insert( tr[k].r , x );
            if ( tr[tr[k].r].rnd<tr[k].rnd )
                Left_rotate( k );
        }
    }
    void Delete( int &k , int x )
    {
        if ( k==0 )
            return;
        if ( x==tr[k].v )
        {
            if ( tr[k].w>1 )
            {
                tr[k].w--;
                tr[k].sizes--;
                return;
            }
            if ( tr[k].l*tr[k].r==0 )
                k = tr[k].l+tr[k].r;
            else if ( tr[tr[k].l].rnd<tr[tr[k].r].rnd )
                Right_rotate( k ),Delete( k , x );
            else
                Left_rotate( k ),Delete( k , x );
        }
        else if ( x<tr[k].v )
            tr[k].sizes--,Delete( tr[k].l , x );
        else
            tr[k].sizes--,Delete( tr[k].r , x );
    }
    int Query_rank( int k , int x )
    {
        if ( k==0 )
            return 0;
        if ( tr[k].v==x )
            return tr[tr[k].l].sizes+1;
        else if ( x<tr[k].v )
            return Query_rank( tr[k].l , x );
        else
            return tr[tr[k].l].sizes+tr[k].w+Query_rank( tr[k].r , x );
    }
    int Query_num( int k , int x )
    {
        if ( k==0 )
            return 0;
        if ( x<=tr[tr[k].l].sizes )
            return Query_num( tr[k].l , x );
        else if ( x>tr[tr[k].l].sizes+tr[k].w )
            return Query_num( tr[k].r , x-tr[tr[k].l].sizes-tr[k].w );
        else
            return tr[k].v;
    }
    void Query_pro( int k , int x )
    {
        if ( k==0 )
            return;
        if ( tr[k].v<x )
        {
            ans = k;
            Query_pro( tr[k].r , x );
        }
        else
            Query_pro( tr[k].l , x );
    }
    void Query_sub( int k , int x )
    {
        if ( k==0 )
            return;
        if ( tr[k].v>x )
        {
            ans = k;
            Query_sub( tr[k].l , x );
        }
        else
            Query_sub( tr[k].r , x );
    }
}treap;

int main()
{
    for ( int n ; scanf ( "%d" , &n )==1 ; )
    {
        treap.Init();
        for ( int i=1 ; i<=n ; i++ )
        {
            int op,x;
            scanf ( "%d%d" , &op , &x );
            if ( op==1 )
                treap.Insert( treap.root , x );
            else if ( op==2 )
                treap.Delete( treap.root , x );
            else if ( op==3 )
                printf ( "%d\n" , treap.Query_rank( treap.root , x ) );
            else if ( op==4 )
                printf ( "%d\n" , treap.Query_num( treap.root , x ) );
            else if ( op==5 )
                treap.Query_pro( treap.root , x ),printf ( "%d\n" , treap.tr[treap.ans].v );
            else if ( op==6 )
                treap.Query_sub( treap.root , x ),printf ( "%d\n" , treap.tr[treap.ans].v );
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值