深度学习——day3 深度卷积网络的实用性建议(计算机视觉)

开源实现

得到作者的开源实现是很方便的(从github下载)

  1. 找到github上要下载的地址
  2. 在命令提示符中使用 git clone + 下载链接

迁移学习

  • 用开源的,其他人训练好的权重、代码等数据为自己的神经网络做初始化
  • 其它层视作冷冻层freeze,只关注自己构建的的softmax输出,只训练特定层的权重
  • 预计算
    在这里插入图片描述
  • 对于更大的数据集,减少冻结的层数
    在这里插入图片描述
  • 一个很大的数据集,用下载的权重作初始化,做梯度下降训练
    在这里插入图片描述

数据扩充

镜像对称和随机剪裁等

在这里插入图片描述

Color shifting

更改RGB数值改变颜色

Implementing distortions during training

在这里插入图片描述

计算机视觉现状

Two sources of knowledge

  • Labeled data
  • Hand engineered(手工工程) features/network architecturelother components

Data vs. hand-engineering

数据量的多少决定工作方式
在这里插入图片描述
下面是一些在基准测试中表现良好的小技巧

Tips for doing well on benchmarks/winning competitions

Ensembling

  • Train several networks independently and average their outputs

Multi-crop at test time

  • Run classifier on multiple versions of test images and average results
  • 10 crop:
    在这里插入图片描述

Use open source code Summary

  • Use architectures of networks published in the literature
  • Use open source implementations if possible
  • Use pretrained models and fine-tune on your dataset
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值