深度学习——day42:基于M-B-LSTM混合网络的短期交通流预测方法

资源下载

点击下载

chap1 INTRODUCTON

A

卡尔曼滤波[3]:Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
(stochasticity and distribution imbalance)随机性和分布不平衡是交通流量的共同特征。
通过积分参数优化和自学习方法,构建了一种新的端到端混合深度学习网络模型M-B-LSTM,

Contributions

1)建立了端到端深度网络模型M-B-LSTM,以解决了深度网络学习和预测流量随机性和分布不平衡过程中的不确定性和过拟合问题。
2)实现了一种在线自学习概率分布映射网络,自动生成和均衡交通流量历史分布,提高了数据识别能力,减少了网络学习中的过拟合问题。
3)将DBLSTM集成到M-B-LSTM网络中,减少了深度网络学习和预测交通流随机性的不确定性。
4)本文对现有的交通流量预测算法进行了比较实验,比较结果为研究提供了全面的参考。

chap3 M-B-LSTM

M-B-LSTM网络体系结构包括数据映射层、随机性减少层和预测层。在数据映射层中,构建了一个在线自学习数据分布网络。在这里插入图片描述

A. Data Mapping Layer

图4所示的概率分布映射网络,在网络训练过程中自动获得参数和f (x),映射变换为式(2):在这里插入图片描述
在这里插入图片描述

映射参数生成器:在这里插入图片描述

映射参数生成器单元:在这里插入图片描述

原始/已处理后的时间序列的交通流量交通流量统计分布:在这里插入图片描述

B. Stochasticity Reducing Layer

图8,将DBLSTM作为随机还原层引入M-B-LSTM模型在这里插入图片描述

C. Forecasting Layer

图9,在M-B-LSTM网络中引入LSTM作为预测交通流量的预测层在这里插入图片描述

D. Network Training

M-B-LSTM训练算法被设计为训练-测试-微调的组合在这里插入图片描述
在这里插入图片描述

chap4 EXPERIMENTS

平均绝对误差(MAE)、平均相对误差(MRE)和均方根误差(RMSE)作为评价指标
dataset:Changchun dataset and I90 dataset

D. Comparison Experiments and Discussion

图14,对所提方法的预测结果和预测值进行了比较,以验证两个数据集的预测精度,M-B-LSTM网络具有更好的预测结果,且预测值与观测值相似在这里插入图片描述

TABLE IV ,深度学习算法在利用更深层次的交通流信息方面优于表面学习算法在这里插入图片描述

TABLE V,Fig. 15,将M-B-LSTM混合网络与MAP-LSTM网络等进行了比较,在这里插入图片描述
M-B-LSTM混合网络与现有方法相比具有优越的性能,在解决交通流的随机性和分布不平衡问题方面具有良好的能力。在这里插入图片描述
TABLE VI,进一步说明M-B-LSTM在不同流量动态顺序下的鲁棒性。综合结果表明,M-B-LSTM在不同交通状态和位置下具有良好的鲁棒性和稳定性,能够满足**ITS(Intelligent Transport System,智能运输系统)**准确稳定预测的需要。
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值