多尺度深度学习——day52 基于领导者的多尺度注意力深度人物再识别架构


Architecture for Person Re-Identification)

3 MULTI-SCALE DEEP ARCHITECTURE (MUDEEP)

在这里插入图片描述

3.1 Basic Convolution Layer

Fig. 3

  • Applied here to extract the middle-level featuresof input person images
  • we apply ResNet-50 as our basic convolution layer,but remove the last block of ResNet-50,our basic convolution layer only consists of the con1, res2, res3 and res4 blocks.
    Fig. 3在这里插入图片描述

3.2 Multi-Scale Stream Layer

在这里插入图片描述

  1. 在三个尺度上分别是1个3x3的过滤器,2个级联的3x3过滤器,3个级联的3x3过滤器
  2. 开始有一个1x1卷积层压缩和提炼关键特征,最后另一个1x1卷积层将特征图恢复到原始的通道数。

TABLE 1,Details of the Multi-Scale Stream Layer
在这里插入图片描述

3.3 Leader-Based Attention Learning Layer

Question:the resulting data channels at different scales may have redundant information
Solution:利用基于领导者的注意学习机制来引导多尺度流层的输出,并自动发现和强调具有更有区别性特征的通道
Fig. 4, Fi 是第 i 个数据流的特征图

  1. F1、F2和F3的特征图首先连接形成“Leader”,因为它需要从多个尺度看到图像。
  2. 然后通过卷积层,与引导通道Cg生成引导特征Hg
  3. 接着,用自注意力机制计算来自两个特征空间的注意力图α
  4. 最后,利用Soft-max函数对Fi重新加权

在这里插入图片描述

3.4 Global and Local Branch Layer

在这里插入图片描述

3.4.1 Global branch

全局特征是直接从全局平均池化中提取的

3.4.2 Local branch

局部分支:在特征映射上水平应用全局平均池的操作——水平的全局平均池化,提取M个局部特征(M x C x 1 x 1)。
最后,在所有特征后使用一个1x1的卷积层用来降维,因此,在全局和局部分支层之后,每个尺度都将得到一个全局特征和M个局部特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值