算法理解3---最长回文子串(题号5)

本文详细介绍了动态规划的解题思路,以求解回文字符串问题为例,阐述了如何分析问题、确定数组结构、初始化及填表过程。作者强调了动态规划的关键在于找到问题的内在规律,并按步骤进行解题,提高解题效率。通过实例代码解析动态规划的实现,并总结了解题经验,鼓励读者尝试用这种方法解决更多动态规划题目。
摘要由CSDN通过智能技术生成

题目

动态规划可是算法的常考题目啦,今天想学动态规划
在这里插入图片描述
我直接找了动态规划的分组,就这个题目啦!,不过这个题目看起来很奇怪,看起来挺简单有思路但是好像又写不出来,最怕这种题啦,今天既然是学动态规划,那么就不能用暴力求解,以后做题都不要用暴力求解,要首先想这个题目要用什么算法,这才能锻炼做题!

动态规划解题分析

  • 动态规划的本质就是将复杂的问题分解,然后通过一步一步解决分解问题,最终求出复杂问题的答案,所以,动态规划就是要确定问题要如何分解!这是第一步
  • 知道如何分解之后,我们就能够确定使用一维数组还是二维数组,这是第二步
  • 创建完数组之后,首先必须要有初始化,一般呢,我们都是根据一些基础数据,慢慢推出后边,没有初始化是不可以的!
  • 最后就是根据我们推导出来的规律把我们的数组填满,我叫他填表这个步骤是最复杂的,我们要确定我们要用什么样的方式填表,填表方案错了也做不出来呦~,最好就是在纸上确定填表的方案,再写代码
    分析完啦,这些是动态规划的基本的解题思路,下边针对这个题实践~

本题分析

  • 第一步,这个题目如何分解呢!!!回文字符串就是规律,例如aabbaa可以分解成判断abba,以此类推!
  • 第二步,确定要用什么数组,这个题目我觉得可以存储(i,j)也就是字符串的从第i位到第j位是否是回文串,这是比较直接的存储方法,也就是Boolean[][] dp = new Boolean[length][length];
  • 第三步,初始化,在这个数组中有哪些数据是提前就可以知道的呢!就是每一个单独的字母都可以看做一个回文串,也就是dp[i][i]都是true!
  • 最后一步,也就是最难的,我把我的草稿放上来
    在这里插入图片描述

这里true的就是初始化的,其他的空位要怎么填充呢
一开始我就想这个一行一行的填充嘛在这里插入图片描述
但是发现行不通,因为填表是和题目的分解规律有关的,填表过程中如果出现未知的位置求未知的位置肯定行不通。换一种方案发现<1><2><3><4>…可行
<1><2><3><4>…这样的顺序填表,也就是斜线做循环,斜线的规律是什么,就是对应位置坐标相减为固定值,也就是最中间斜线相差为0,后边是相差1,2,3,再结合数组含义,也就是回文字符串的长度!也就是,=按照回文字符串长度做循环填表了
然后开始写代码!

代码

class Solution {
        public static String longestPalindrome(String s) {
        int begin = 0;
        int max = 1;
        int length = s.length();
        if (length < 2) {
            return s;
        }
        //存储从【i-j】位是否是回文串
        Boolean[][] dp = new Boolean[length][length];
        for (int i = 0; i < length; i++) {
            //每一位都是单独一个字母,都算是回文串
            dp[i][i] = true;
        }
        //动态规划题目最难的就是我们应该如何递推,换句话也就是对于动态规划表(二维矩阵),我们要如何填满
        //回文串的长度肯定是2到length,如果我们每一次找固定一个长度的回文串,那么就可以把问题拆解
        for (int len = 2; len <= length; len++) {
            for (int i = 0; i < length; i++) {
                //根据长度确定j,也就是在表格中找到斜线上的点
                int j = i + len - 1;
                //可以减少处理次数,因为随着长度增大,对角线的格数也在变小
                if (j >= length) {
                    break;
                }
                //如果对应位置不等,直接判断不是回文串
                if (s.charAt(i) != s.charAt(j)) {
                    dp[i][j] = false;
                } else {
                    //如果(i,j)相等,就只需要看(i+1,j-1)是否是回文串了
                    if (j - i < 3) {
                        //(i+1,j-1)不存在,也就是长度是2或者3,中间没有字幕或者只有一个字母,一定是回文
                        dp[i][j] = true;
                    } else {
                        //只需要看中间的串是不是回文串了
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }
                //判断这一个回文串,是不是更大,是的话,记录下来
                if (dp[i][j]) {
                    if (j - i + 1 > max) {
                        begin = i;
                        max = j - i + 1;
                    }
                }
            }
        }
        //如果没有超过2的长度的回文字符串,那么就是默认值,(0,1),也就是第一个字母
        return s.substring(begin, begin+max);
    }
}

总结

又一个动态规划的题目,其实动态规划的题目做起来还是挺爽的,就是去找问题的内在规律,把问题拆成小问题,这样题目理解透彻了,也就做出来了!以后都要按照这个步骤去做动态规划的题,学会了不,宝贝~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值