- 博客(9)
- 收藏
- 关注
原创 线性规划的单纯形法及python实现
文章目录1. 线性规划的解2. 线性规划的标准型3. 初级单纯形法4. 修正单纯形法5. 修正单纯形的代码实现1. 线性规划的解一个线性规划(LP)问题如果有最优解,必定有一个最优解出现在顶点上。从几何上讲,线性规划的约束集合为凸面体,一个超平面(目标函数的等值面)靠近约束集合时,最先接触到的必然是凸面体的一个顶点或一条边,因此一定有一个最优解出现在顶点上。2. 线性规划的标准型线性规划的标准型为:min cTxs.t. Ax=b x≥0\begin{alig
2024-05-17 14:23:47 1368
原创 线性规划的基本性质
两阶段法是指:在第一阶段检验原问题的可行性,并找到一个初始可行解,在第二阶段寻找最优解。与两阶段法不同的是,大M法通过一次搜索既可以判定原问题的可行性,又可以找到(可能是局部)最优解。,每个人工变量取满足约束的最小值,可得一个人工初始解(0, 0, 2, 1.5, 0.5)。都非负,且目标是最小化两者之和,因此在最优解处,必然有一个变量为0,则上述两个替代都成立。选择一个原问题的解(可能不满足全部约束,一般取范围约束的端点,如零点),给。,即人工变量都为0,则最优解中的原问题变量构成原问题的一个可行解;
2024-05-14 13:49:58 1083
原创 梯度的几何解释
之前一直使用梯度法,本文系统整理一下梯度的几何解释,为后面搜索算法的理解打基础。参考文献:运筹学(原书第2版)—[美]罗纳德L.拉丁(Ronald L.Rardin)
2024-04-08 20:42:17 819
原创 生存分析(Survival Analysis)
由于在进行排队论理论分析时时常涉及到生存函数、风险函数的概念,因此在本篇文章记录和梳理一下生存函数的意义,全部使用概率进行理解。
2024-01-26 17:34:25 666 1
原创 机器维修/干扰问题(Machine Repair/Interference problem)
机器维修问题(Machine Repair Problem,MRP)或称机器干扰问题(Machine Interference Problem)是排队问题中的典型问题,下面首先介绍排队论的基础知识和分析方法,接着介绍MRP的一些结论。
2024-01-26 14:37:47 1751 1
原创 基于A*算法的多智能体路径规划(Multi-agent Path Finding,MAPF)学习笔记
个人认为层次化搜索的引入是为了解决那些无法快速得到搜索点到终点的距离的场景,这些场景下必须进行BFS搜索才能得到每个点到终点的距离,这会大大增加A*中获取启发值的成本,因此必须对原始空间进行抽象,减少搜索的状态来加速获取到终点的距离。路径窗口的引入可以避免单智能体每次规划路径时考虑整条路径上的冲突,实际上环境是变化的,其他智能体的路径和预测状态也是变化的,提前考虑所有信息可能导致路径规划很慢,窗口路径会节省考虑很多可能不会发生的冲突的时间。
2023-11-10 19:01:24 3117 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人