数据分析及可视化

数据分析及可视化的概念
数据分析是指用适当的同级分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
步骤:收集数据——>提取信息——>形成结论
最后借助图形表示数据
数据分析可视化流程

  • 定义分析目标
  • 数据采集及预处理
  • 数据分析挖掘
  • 数据可视化
    数据清洗
    数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。
    数据分析案例
  • 电影院以电影放映时间和入座率的时间序列模型进行排片
  • 网点挖掘商品售卖记录进行更科学的定价
  • 城市根据交通情况绘制热力图,优化图形效率。
    如:美国啤酒和尿布——也涉及机器学习
    常见的可视化形式
  • 统计图(直方图,折行图,饼图)
  • 分布图(热力图,散点图,气泡图)
    常见可视化工具
  • 分析工具:pandas,SciPy,numpy,sklearn
  • 绘图工具:matplotlib,Pychart,reportlab
  • 平台工具:Jupyter Notebook,Pycharm
    Matplotlib是Python的绘图库,它可与Numpy一起使用,提供了一种有效开源替代方案。它也可以和图形工具包一起使用,如PyQt何vxPython
    具体绘图案列请查看https://blog.csdn.net/qq_43540348/article/details/101175221?utm_source=app
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值