免费GPU——Google Colab使用

免费GPU——Google Colab使用

1、创建新的Notebook

网址:https://colab.research.google.com/
在这里插入图片描述

点击“新建笔记本”进行创建

2、设置免费GPU

在这里插入图片描述
点击“更改运行时类型”,打开界面如下所示:
在这里插入图片描述
选择“T4 GPU”,然后“保存”即可使用免费GPU资源

3、测试是否处于GPU环境

import torch
 
torch.cuda.is_available()

在这里插入图片描述

4、挂载Google Drive

from google.colab import drive
drive.mount('/content/drive')

首先需要创建谷歌帐号,创建好后,使用谷歌帐号登录

### Google Colab 与 Jupyter Notebook 的使用体验对比 #### 使用体验 Google Colab 是一种基于云端的服务,允许用户无需安装任何软件即可运行 Python 脚本和 notebook 文件。由于其完全托管在谷歌云平台上,因此对于初学者来说非常友好[^2]。相比之下,Jupyter Notebook 需要本地环境的支持或者依赖于特定的服务器部署方案才能实现类似的在线编辑功能。 然而,在离线情况下或当网络连接不稳定时,Colab 可能会受到一定影响;而传统意义上的 Jupyter Notebook 则可以在用户的个人计算机上独立运作[^1]。 #### 功能差异 ##### 核心特性继承 Colab 基于 Jupyter Notebook 构建而成,所以它自然也具备后者所有的基础能力——比如支持交互式的编程模式以及能够无缝嵌入富媒体内容(图像、视频等)。这些都使得研究者们能够在单一文档内完成从数据探索到模型训练再到最终报告撰写整个流程的所有环节[^3]。 但是值得注意的是尽管两者表面上看起来十分相似,但在实际操作过程中还是存在一些细微差别。例如说虽然二者都可以创建 Markdown 单元用于描述说明信息,但是在具体细节处理方面可能有所区别[^5]。 另外值得一提的是 PyCharm 这样的 IDE 工具还可以跟 Jupyter Notebook 形成互补关系,即把复杂逻辑部分放在前者里面精心打磨后再转移到后者当中作为模块被调用起来[^4]。这种做法不仅有助于提高开发效率同时也便于维护管理大型项目结构。 最后关于硬件资源利用情况而言,鉴于 Colab 提供免费 GPU/TPU 加速选项这一得天独厚的优势条件,所以在涉及深度学习领域应用场合下往往更受青睐。 ```python # 示例代码展示如何在 Colab 中启用 TPU 支持 try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise BaseException('ERROR: Not connected to a TPU runtime; please see the previous cell in this notebook for instructions!') tf.config.experimental_connect_to_cluster(tpu) ``` ### 总结 综上所述,无论是选择哪一款工具都需要根据具体的业务需求和个人偏好来做决定。如果追求便捷性和强大的计算力,则推荐尝试一下 Google Colab;而对于那些希望拥有更多自主控制权并倾向于定制化解决方案的人来说,或许传统的 Jupyter Notebook 更加合适一点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值