常用的下采样方法

常用的下采样方法

解决数据分布不均衡的下采样的目的就从多数集中选出一部分数据与少数集重新组合成一个新的数据集。那么如何在多数集中选出这样的数据呢?

1. 随机下采样

随机欠采样的思想同样比较简单,就是从多数类样本中随机选取一些剔除掉。这种方法的缺点是被剔除的样本可能包含着一些重要信息,致使学习出来的模型效果不好。

2. EasyEnsemble 和 BalanceCascade

EasyEnsemble和BalanceCascade采用集成学习机制来处理传统随机欠采样中的信息丢失问题。

EasyEnsemble将多数类样本随机划分成n个子集,每个子集的数量等于少数类样本的数量,这相当于欠采样。接着将每个子集与少数类样本结合起来分别训练一个模型,最后将n个模型集成,这样虽然每个子集的样本少于总体样本,但集成后总信息量并不减少。

如果说EasyEnsemble是基于无监督的方式从多数类样本中生成子集进行欠采样,那么BalanceCascade则是采用了有监督结合Boosting的方式(Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数)。在第n轮训练中,将从多数类样本中抽样得来的子集与少数类样本结合起来训练一个基学习器H,训练完后多数类中能被H正确分类的样本会被剔除。在接下来的第n+1轮中,从被剔除后的多数类样本中产生子集用于与少数类样本结合起来训练,最后将不同的基学习器集成起来。BalanceCascade的有监督表现在每一轮的基学习器起到了在多数类中选择样本的作用,而其Boosting特点则体现在每一轮丢弃被正确分类的样本,进而后续基学习器会更注重那些之前分类错误的样本。

3. NearMiss

NearMiss本质上是一种原型选择(prototype selection)方法,即从多数类样本中选取最具代表性的样本用于训练,主要是为了缓解随机欠采样中的信息丢失问题。NearMiss采用一些启发式的规则来选择样本,根据规则的不同可分为3类:

NearMiss-1:选择到最近的K个少数类样本平均距离最近的多数类样本
NearMiss-2:选择到最远的K个少数类样本平均距离最近的多数类样本
NearMiss-3:对于每个少数类样本选择K个最近的多数类样本,目的是保证每个少数类样本都被多数类样本包围
NearMiss-1和NearMiss-2的计算开销很大,因为需要计算每个多类别样本的K近邻点。另外,NearMiss-1易受离群点的影响,如下面第二幅图中合理的情况是处于边界附近的多数类样本会被选中,然而由于右下方一些少数类离群点的存在,其附近的多数类样本就被选择了。相比之下NearMiss-2和NearMiss-3不易产生这方面的问题。
————————————————
版权声明:本文为CSDN博主「志存高远脚踏实地」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44451032/article/details/99974665

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值