P2604 [ZJOI2010]网络扩容

题目描述

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

输入格式

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

输出格式

输出文件一行包含两个整数,分别表示问题1和问题2的答案。


题解:
第一问直接最大流即可,第二问设置超级源点连向1,容量为K,费用为0,表示限制最大容量拓展了K,然后利用残余网络,在每条边之间再建一条边,容量为INF,费用为co[i]。

因为要跑最小费用最大流,而原图是无花费的最大流,所以只需要再残余网络上继续增广,就可以保证抛出最小费用了


AC代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define LL long long
#define pii pair<int,int>
#define mp(a,b) make_pair(a,b)
const int MAXN = 2e5+50;
const int MAXM = 2e6+50;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int n,m,k,s,t,tot=1,head[MAXN],to[MAXM],w[MAXM],co[MAXM],nxt[MAXM],h[MAXN];
int a[MAXN],b[MAXN],c[MAXN],d[MAXN],vis[MAXN],dis[MAXN],flow[MAXN],pre[MAXN];
inline void ade(int u,int v,int ww,int cost){
    to[++tot]=v; w[tot]=ww; co[tot]=cost; nxt[tot]=head[u]; head[u]=tot;
}
inline void add(int u,int v,int w,int cost){ ade(u,v,w,cost); ade(v,u,0,-cost); }
inline int bfs(){
    queue<int> que; que.push(s); memset(h,0,sizeof(h)); h[s]=1;
    while(!que.empty()){
        int u=que.front(); que.pop();
        for(int i=head[u];i;i=nxt[i]){
            if(w[i] && !h[to[i]]){
                h[to[i]]=h[u]+1; que.push(to[i]);
            }
        }
    }
    return h[t];
}
inline int dfs(int x,int f){
    if(x==t) return f; int fl=0;
    for(int i=head[x];i;i=nxt[i]){
        if(w[i] && h[to[i]]==h[x]+1){
            int mi=dfs(to[i],min(f,w[i]));
            w[i]-=mi; w[i^1]+=mi; fl+=mi; f-=mi;
        }
    }
    if(!fl) h[x]=-1;
    return fl;
}
inline int dinic(){
    int res=0;
    while(bfs()) res+=dfs(s,INF);
    return res;
}
inline int spfa(){
    for(int i=0;i<=t;i++) dis[i]=INF;
    queue<int> que; que.push(s); dis[s]=0; vis[s]=1; flow[s]=INF;
    while(!que.empty()){
        int u=que.front(); que.pop(); vis[u]=0;
        for(int i=head[u];i;i=nxt[i]){
            if(w[i] && dis[to[i]]>dis[u]+co[i]){
                dis[to[i]]=dis[u]+co[i]; pre[to[i]]=i;
                flow[to[i]]=min(flow[u],w[i]);
                if(!vis[to[i]]) vis[to[i]]=1,que.push(to[i]);
            }
        }
    }
    return dis[t]!=INF;
}
inline int EK(){
    int res=0;
    while(spfa()){
        res+=flow[t]*dis[t]; int x=t;
        while(x!=s){
            int i=pre[x];
            w[i]-=flow[t]; w[i^1]+=flow[t]; x=to[i^1];
        }
    }
    return res;
}
signed main(){
#ifndef ONLINE_JUDGE
    freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUDGE
    scanf("%d%d%d",&n,&m,&k); s=1; t=n;
    for(int i=1;i<=m;i++) scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
    for(int i=1;i<=m;i++) add(a[i],b[i],c[i],0);
    int res1=dinic(); s=0; add(s,1,k,0);
    for(int i=1;i<=m;i++) add(a[i],b[i],1e8,d[i]);
    int res2=EK();
    printf("%d %d\n",res1,res2);
    return 0;
}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值