以上方向都涉及到图神经网络
传统机器学习,各样本间独立同分分布。现在的深度学习多用于解决表格、矩阵和序列数据。图各个节点间有链接关系,也是一种信息,属于关联数据。
图的复杂性:
多模态特征:各个节点间的信息可能不一样
图神经网络基本结构
输入为图,输出可能多样
中间的黑箱可有图神经网络自动提取特征(类似卷积神经网络),不需要认为干预可实现端到端的表示学习(表示学习:将一个节点映射为一个d维的向量,向量中保函着节点的各种语义信息),这个过程也叫做图嵌入,通过这个步骤就可将图问题变为传统机器学习问题。
课程目录
图机器学习工具
图数据可视化工具
图数据库
图数据挖掘所能解决的问题
- 最短路径的查找,,百度地图
- 分析某个节点的重要度,,哪个网页更重要
- 社群检测
- 社交预测,,与。。。认识
- 相似性估计
- 节点映射为低纬的向量,以便后续的机器学习
社交网络
图数据挖掘项目