图神经网络基本介绍第一节课

 以上方向都涉及到图神经网络

传统机器学习,各样本间独立同分分布。现在的深度学习多用于解决表格、矩阵和序列数据。图各个节点间有链接关系,也是一种信息,属于关联数据。

图的复杂性:

         多模态特征:各个节点间的信息可能不一样

图神经网络基本结构

 输入为图,输出可能多样

中间的黑箱可有图神经网络自动提取特征(类似卷积神经网络),不需要认为干预可实现端到端的表示学习(表示学习:将一个节点映射为一个d维的向量,向量中保函着节点的各种语义信息),这个过程也叫做图嵌入,通过这个步骤就可将图问题变为传统机器学习问题。

课程目录

 图机器学习工具

 

 图数据可视化工具

 图数据库

 图数据挖掘所能解决的问题

  • 最短路径的查找,,百度地图
  • 分析某个节点的重要度,,哪个网页更重要
  • 社群检测
  • 社交预测,,与。。。认识
  • 相似性估计
  • 节点映射为低纬的向量,以便后续的机器学习

        

                 

社交网络

图数据挖掘项目

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值