datawhale学习
菜菜沝
这个作者很懒,什么都没留下…
展开
-
AI量化模型挑战赛【学习笔记2】
正则化是一种防止过拟合的技术,能够提高模型的泛化能力。则化通过向损失函数中引入惩罚项来实现,这些惩罚项会根据模型参数的大小进行调整,以减少大的参数值,从而使模型更加平滑和稳定。L1范数正则化(Lasso正则化):它向损失函数中添加参数的绝对值之和作为惩罚项。L1正则化有助于产生稀疏权重,即许多特征的权重会变为零,从而实现特征选择和降维的效果。* L2范数正则化(Ridge正则化):它向损失函数中添加参数的平方和的平方根作为惩罚项。原创 2023-08-09 21:42:05 · 249 阅读 · 1 评论 -
农民身份识别挑战赛【学习笔记】
torch是一个开源的机器学习库,它提供了丰富的工具和函数,用于构建和训练神经网络。torch提供了各种各样的张量操作函数,如加法、乘法、矩阵乘法等,以及各种常见的数学函数和激活函数。总的来说,os.listdir更适合简单地获取目录下的文件和文件夹列表,而glob.glob更适合根据模式匹配来获取符合条件的文件路径列表。返回结果:os.listdir返回一个包含目录下所有文件和文件夹名称的列表,而glob.glob返回一个符合指定模式的。原创 2023-08-06 18:15:20 · 93 阅读 · 0 评论 -
图的基本表示_图神经网络第二节
图的基本介绍原创 2023-02-16 23:36:58 · 123 阅读 · 0 评论 -
图神经网络基本介绍第一节课
图神经网络的基本介绍原创 2023-02-15 23:00:23 · 91 阅读 · 0 评论 -
自适应提升法
自适应提升算法,英文Adaboost的全称是Adaptive Boosting。是一种有监督的集成学习。核心思想是对某一特定的训练集训练多个弱分类器,然后根据相应策略将这些弱分类器结合起来,构成最终的强分类器。自适应提升法的核心思想是,在每次分类任务中重点关注被错误分类的样本,减少对被分类正确的样本的关注。这样逐步可以得到一个比较清晰的分类方向,即一个强分类器。...原创 2021-10-14 09:14:08 · 1043 阅读 · 0 评论 -
信息熵和信息增益
通俗理解:信息熵是描述事物的复杂程度,即一件事发生的不确定性。信息增益是指一个节点分裂后对这个事件不确定性或者纯度带来的影响。当一件事发生的可能性越低时,其不确定性越大,相应的纯度越低信息增益在分类任务中的作用表现在,通过计算信息熵,看哪个属性对分类结果的影响最大。基本表示信息熵,表示X事件发生的不确定性。条件熵,表示,在X的情况下,Y带来的不确定性信息增益...原创 2021-10-12 15:20:29 · 876 阅读 · 0 评论