Resource 'taggers/averaged_perceptron_tagger/averaged_perceptron _tagger.pickle' not found.

错误如下:

LookupError: 
**********************************************************************
  Resource 'taggers/averaged_perceptron_tagger/averaged_perceptron
  _tagger.pickle' not found.  Please use the NLTK Downloader to
  obtain the resource:  >>> nltk.download()
  Searched in:
    - 'C:\\Users\\Dream^hao`/nltk_data'
    - 'C:\\nltk_data'
    - 'D:\\nltk_data'
    - 'E:\\nltk_data'
    - 'E:\\anaconda3.5\\nltk_data'
    - 'E:\\anaconda3.5\\lib\\nltk_data'
    - 'C:\\Users\\Dream^hao`\\AppData\\Roaming\\nltk_data'
**********************************************************************

解决方法:

  1. 下载下面的文件:
链接:https://pan.baidu.com/s/11M1HkeibAd50oU-OmELorQ
提取码:bcvr
  1. 在编写python代码的工具中输入以下代码,得到nltk_data的路径:
import nltk
nltk.data.path

我的结果是:
在这里插入图片描述
4. 将上面下载的文件解压到上面的某个目录中,我解压到的是C:\Users\Dream^hao\AppData\Roaming\nltk_data
在这里插入图片描述
5. 然后程序就可以正常运行了:
在这里插入图片描述

好的,这是一个Python编写代码的任务,需要使用Python语言来完成。 以下是代码实现的步骤: 1. 导入必要的模块,如nltk、random等。 ```python import nltk import random from nltk.corpus import brown from nltk import pos_tag, word_tokenize from nltk.tag import DefaultTagger, UnigramTagger, BigramTagger ``` 2. 获取已标注语料库,递增地更新字典。 ```python brown_tagged_sents = brown.tagged_sents(categories='news') size = int(len(brown_tagged_sents) * 0.9) train_sents = brown_tagged_sents[:size] test_sents = brown_tagged_sents[size:] t0 = DefaultTagger('NN') t1 = UnigramTagger(train_sents, backoff=t0) t2 = BigramTagger(train_sents, backoff=t1) # 递增地更新字典 t2.train(train_sents) ``` 3. 按值排序,并通过开头两个字母索引词汇。 ```python # 按值排序 sorted_vocab = sorted(set(word.lower() for sentence in brown.sents() for word in sentence)) # 通过开头两个字母索引词汇 index = {} for word in sorted_vocab: index.setdefault(word[:2], []).append(word) ``` 4. 训练一个组合标注器(回退标注器可自行选择,要求训练数据与测试数据不同),评估其性能并保存。 ```python # 训练组合标注器 tagger = nltk.tag.sequential.RegexpTagger( [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers (r'(The|the|A|a|An|an)$', 'AT'), # articles (r'.*able$', 'JJ'), # adjectives (r'.*ness$', 'NN'), # nouns formed from adjectives (r'.*ly$', 'RB'), # adverbs (r'.*s$', 'NNS'), # plural nouns (r'.*ing$', 'VBG'), # gerunds (r'.*ed$', 'VBD'), # past tense verbs (r'.*', 'NN') # nouns (default) ]) combined_tagger = nltk.tag.sequential.BigramTagger(train_sents, backoff=tagger) # 评估性能并保存 print(combined_tagger.evaluate(test_sents)) nltk.download('taggers/combined_tagger') nltk.data.save('combined_tagger', combined_tagger) ``` 5. 检查组合标注器是否可以用来标注。 ```python # 加载组合标注器 tagger = nltk.data.load('combined_tagger') # 使用标注器标注文本 text = "This is a sample sentence." tokens = word_tokenize(text) tagged_tokens = tagger.tag(tokens) print(tagged_tokens) ``` 完整代码如下: ```python import nltk import random from nltk.corpus import brown from nltk import pos_tag, word_tokenize from nltk.tag import DefaultTagger, UnigramTagger, BigramTagger # 获取已标注语料库,递增地更新字典 brown_tagged_sents = brown.tagged_sents(categories='news') size = int(len(brown_tagged_sents) * 0.9) train_sents = brown_tagged_sents[:size] test_sents = brown_tagged_sents[size:] t0 = DefaultTagger('NN') t1 = UnigramTagger(train_sents, backoff=t0) t2 = BigramTagger(train_sents, backoff=t1) t2.train(train_sents) # 按值排序,并通过开头两个字母索引词汇 sorted_vocab = sorted(set(word.lower() for sentence in brown.sents() for word in sentence)) index = {} for word in sorted_vocab: index.setdefault(word[:2], []).append(word) # 训练组合标注器,评估性能并保存 tagger = nltk.tag.sequential.RegexpTagger( [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers (r'(The|the|A|a|An|an)$', 'AT'), # articles (r'.*able$', 'JJ'), # adjectives (r'.*ness$', 'NN'), # nouns formed from adjectives (r'.*ly$', 'RB'), # adverbs (r'.*s$', 'NNS'), # plural nouns (r'.*ing$', 'VBG'), # gerunds (r'.*ed$', 'VBD'), # past tense verbs (r'.*', 'NN') # nouns (default) ]) combined_tagger = nltk.tag.sequential.BigramTagger(train_sents, backoff=tagger) print(combined_tagger.evaluate(test_sents)) nltk.download('taggers/combined_tagger') nltk.data.save('combined_tagger', combined_tagger) # 检查组合标注器是否可以用来标注 tagger = nltk.data.load('combined_tagger') text = "This is a sample sentence." tokens = word_tokenize(text) tagged_tokens = tagger.tag(tokens) print(tagged_tokens) ``` 注意:在运行代码之前需要安装nltk模块,使用以下命令安装即可: ```python pip install nltk ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ElegantCodingWH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值