RC电路知识讲解

RC电路是指由电阻R和电容C组成的电路,他是脉冲产生和整形电路中常用的电路。1.RC
1.RC充电电路

在这里插入图片描述电源通过电阻给电容充电,由于一开始电容两端的电压为0,所以电压的电压都在电阻上,这时电流大,充电速度快。随着电容两端电压的上升,电阻两端的电压下降,电流也随之减小,充电速度变小。

在这里插入图片描述

充电的速度与电阻和电容的大小有关。电阻R越大,充电越慢,电容C越大,充电越慢。衡量充电速度的常数t(tao)=RC。
2.RC放电电路

在这里插入图片描述

电容C通过电阻R放电,由于电容刚开始放电时电压为E,放电电流I=E/R,改电流很大,所以放电速度很快。随着电容不断的放电,电容的电压也随着下降。电流也很快减小。
电容的放电速度与RC有关,R的阻值越大,放电速度越慢。电容越大,放电速度越慢。
在这里插入图片描述
3.RC积分电路
RC积分电路可以将矩形波转变成三角波(或锯齿波)。
在这里插入图片描述

电路工作原理:
在0-t1时间,矩形波为低电平,无电压对电容进行充电,所以输出电压为0。
在t1-t2时间,矩形波为高电平,有电压对电容进行充电,输出电压慢慢上升,由于时间常数tao=RC远大于脉冲的宽度tw,所以t2时间,输出电压无法到达高电平Vm。
在t2-t4时间,矩形波为低电平,电容C开始放电。
积分电路应该满足时间常数tao=RC远大于脉冲的宽度tw,一般大于3tw就行。
在这里插入图片描述
4.RC微分电路
RC微分电路可以将矩形波转化为宽度很窄的尖峰脉冲信号。

在这里插入图片描述

电路工作原理:
在0-t1时间里,矩形波为低电平,输入电压为0,无电流流过电容和电阻,所以电阻两端电压为0.
在t1-t2时间里,矩形波为高电平,输入电压为Vm,这时电容还没被充电,所以电阻两端电压为Vm,t1以后,电容开始充电,电阻两端的电压也随之下降。由于时间常数很小,所以电容很快就充电完成,电容电压上升到Vm,电阻电压为0。
在t2-t3时间,矩形波为低电平,输入电压为0,电容相当于一个电源,电阻得到一个下正上负的电压,随着电容的放电,电阻两端的电压也下降。

在这里插入图片描述

### 二维前缀和算法在瓦片图案生成或处理中的应用 #### 定义与基本原理 二维前缀和是一种用于快速求解矩形区域内元素总和的技术。对于给定的一个矩阵 `A`,可以预先计算一个新的矩阵 `prefixSum`,其中每个元素 `(i,j)` 表示从原点 `(0,0)` 到当前坐标的子矩阵内所有数值之和。 通过这种方式,在后续查询任意指定区域内的元素累积值时只需常数时间复杂度 O(1),因为只需要访问四个预处理过的节点即可完成加减运算得出结果[^1]。 #### 应用场景分析 当涉及到像地图服务这样的应用场景时——特别是采用分层切片机制的地图系统(如微软 Bing 地图),这种技术能够显著提升性能效率: - **加速渲染过程**:利用二维前缀和可以在瞬间获取特定范围内的数据汇总信息,从而加快图像合成速度; - **简化碰撞检测逻辑**:游戏开发等领域经常需要用到对象间相互作用判断,借助此方法可迅速定位目标区间并作出响应; - **优化路径规划算法**:无论是最短路还是其他形式的空间搜索问题,都能受益于高效的数据检索能力所带来的优势[^2]。 #### 实现案例展示 下面给出一段 Python 代码片段作为例子说明如何基于上述理论框架构建实际解决方案: ```python def build_prefix_sum(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 prefix_sum = [[0]*(cols+1) for _ in range(rows+1)] for i in range(1,rows+1): for j in range(1,cols+1): prefix_sum[i][j]=matrix[i-1][j-1]+\ prefix_sum[i-1][j]+ \ prefix_sum[i][j-1]- \ prefix_sum[i-1][j-1] return prefix_sum def query_submatrix_sum(prefix_sum,x1,y1,x2,y2): """Query sum of elements within sub-matrix defined by top-left (x1,y1), bottom-right(x2,y2).""" return prefix_sum[x2+1][y2+1]-prefix_sum[x1][y2+1]-prefix_sum[x2+1][y1]+prefix_sum[x1][y1] # Example usage: input_matrix=[[3,0,1,4],[2,8,7,5],[4,6,9,1]] ps=build_prefix_sum(input_matrix) print(query_submatrix_sum(ps,1,1,2,2)) # Output should be 30 which is the sum inside this area. ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点奶茶叫上我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值