原子范数最小化(Atomic Norm Minimization)

原子范数最小化(Atomic Norm Minimization)

l 0 l_0 l0-原子范数

原子集
A = { a ( θ , ϕ ) = a ( θ ) ϕ : θ ∈ [ − 9 0 ∘ , 9 0 ∘ ] , ϕ ∈ C , ∣ ϕ ∣ = 1 } \mathcal{A} = \{\boldsymbol{a}(\theta,\phi) = \boldsymbol{a}(\theta)\phi : \theta\in [-90^\circ,90^\circ], \phi \in \mathbb{C}, |\phi| = 1 \} A={a(θ,ϕ)=a(θ)ϕ:θ[90,90],ϕC,ϕ=1}
对于无噪声条件下的单快拍接收信号。
z = A ( θ ) s z = \boldsymbol{A}(\theta) \boldsymbol{s} z=A(θ)s
l 0 l_0 l0范数的定义
∥ z ∥ A , 0 = inf ⁡ s k , θ k { K : z = ∑ k = 1 K a ( θ k ) s k , θ k ∈ [ − 9 0 ∘ , 9 0 ∘ ] } \|\mathit{z}\|_{\mathcal{A},0} = \inf_{s_k,\theta_k}\{\mathcal{K}:z = \sum_{k = 1}^{\mathcal{K}} \boldsymbol{a} \left(\theta_k\right)s_k, \theta_k \in [-90^\circ,90^\circ] \} zA,0=sk,θkinf{K:z=k=1Ka(θk)sk,θk[90,90]}
l 0 l_0 l0范数指的是,组成向量 z z z的最小原子的个数。DOA估计反映在该问题中就是找出原子个数最小的情况下的方向向量的组合

而对于稀疏阵列而言,信号 z z z往往是残缺的,不完整的。信号恢复的过程,可以理解为:填充向量 z z z,使其在原子集 A \mathcal{A} A下,原子范数最小,即:
min ⁡ z ∥ z ∥ A , 0 \min_{z}\|\mathit{z}\|_{\mathcal{A},0} zminzA,0

最小化Toeplitz矩阵的秩

引理1

对于任意的半正定矩阵 T ( z ) ∈ C L × L \mathcal{T}\left(z\right) \in \mathbb{C}^{L \times L} T(z)CL×L,如果 r = r a n k ( T ( z ) ) ≤ L − 1 r=rank(\mathcal{T}(z)) \leq L-1 r=rank(T(z))L1,则Hermitian Toeplitz矩阵能够被唯一范德蒙分解为:
T ( z ) = ∑ k = 1 r p k a ( θ k ) a H ( θ k ) = A ( θ ) P A H ( θ ) \mathcal{T}\left(z\right) = \sum_{k=1}^{r}p_k\boldsymbol{a}(\theta_k)\boldsymbol{a}^H(\theta_k) = \boldsymbol{A}(\theta)\boldsymbol{P}\boldsymbol{A}^H(\theta) T(z)=k=1rpka(θk)aH(θk)=A(θ)PAH(θ)
其中, A ∈ C L × r \boldsymbol{A}\in \mathbb{C}^{L\times r} ACL×r是范德蒙矩阵,它的列视为来自不同方向的信号的方向向量, P ∈ C r × r \boldsymbol{P}\in \mathbb{C}^{r\times r} PCr×r是对角矩阵。

引理2

考虑以下的式子:
[ x z H z T ( z ) ] ⪰ 0 \begin{bmatrix} x & \boldsymbol{z}^H \\ \boldsymbol{z} & \mathcal{T}\left(z\right) \end{bmatrix} \succeq 0 [xzzHT(z)]0
其中, x x x是一个待优化的变量。这个式子对应了以下的结论:

  1. T ( z ) ⪰ 0 \mathcal{T}\left(z\right)\succeq 0 T(z)0
  2. z \boldsymbol{z} z 一定位于Toeplitz矩阵 T ( z ) \mathcal{T}\left(z\right) T(z) 的列向量中。

问题的转化

由于上面的结论2,所以 z \boldsymbol{z} z一定可以被 A ( θ ) \boldsymbol{A}(\theta) A(θ)中的 r r r个子向量线性表出。而这 r r r个子向量就是矩阵 T ( z ) \mathcal{T}\left(z\right) T(z)范德蒙分解后的 r r r个特征向量。因此,向量 z \boldsymbol{z} z l 0 l_0 l0范数最小化就是 T ( z ) \mathcal{T}\left(z\right) T(z)矩阵秩的最小化。问题即可转换为:
min ⁡ x , z r a n k ( T ( z ) ) s . t [ x z H z T ( z ) ] ⪰ 0 \min_{x,z} rank(\mathcal{T}\left(z\right)) \\ s.t \quad \begin{bmatrix} x & \boldsymbol{z}^H \\ \boldsymbol{z} & \mathcal{T}\left(z\right) \end{bmatrix} \succeq 0 x,zminrank(T(z))s.t[xzzHT(z)]0
然而,该优化问题并不是一个凸优化,无法直接求解。

转换为凸优化问题

凸松弛(Relaxation)

解释:通过对问题限制条件的松弛,将原非凸问题转换为凸优化问题。注:松弛原问题,只能得到一个可行域更大的问题,如果原问题是求最小,则松弛后的问题的最优值一定小于等于原问题的最优值,这也是一种给出下界的方法。松弛不仅仅用于整数约束,只要利于将定义域非凸变为凸集即可。

例如, l 0 l_0 l0范数(非凸)的最紧凸松弛为 l 1 l_1 l1范数(凸),即:将向量中非零元素的个数转为元素绝对值的和。

那么,类似的,可以将 l 0 l_0 l0-原子范数松弛为 l 1 l_1 l1-原子范数。或者,将 r a n k ( T ( z ) ) rank(\mathcal{T}\left(z\right)) rank(T(z))松弛为核范数 ∥ T ( z ) ∥ ∗ \|\mathcal{T}\left(z\right)\|_* T(z)

l 1 l_1 l1-原子范数最小化

l 1 l_1 l1-原子范数的定义如下:
∥ z ∥ A , 1 = inf ⁡ s k , θ { ∑ k ∣ s k ∣ : z = ∑ k = 1 K a ( θ k ) s k , θ k ∈ T } \|z\|_{\mathcal{A},1} = \inf_{s_k,\theta}\{\sum_{k}{|s_k|}:z=\sum_{k=1}^{\mathcal{K}}\boldsymbol{a}(\theta_k)s_k,\theta_k\in\mathbb{T}\} zA,1=sk,θinf{ksk:z=k=1Ka(θk)sk,θkT}
从形式上看,问题已经转换成:恢复一个单快拍信号向量 z z z,使得其 l 1 l_1 l1-原子范数最小,即:
min ⁡ z ∥ z ∥ A , 1 \min_{z}\|z\|_{\mathcal{A},1} zminzA,1
此时,最小化 l 1 l_1 l1范数依然看起来十分困难,所以再次利用范德蒙分解,将该问题转化为:
min ⁡ x , z 1 1 2 ( x + z 1 ) s . t [ x z H z T ( z ) ] ⪰ 0 \min_{x,z_1} \frac{1}{2}(x+z_1) \\ s.t \quad \begin{bmatrix} x & \boldsymbol{z}^H \\ \boldsymbol{z} & \mathcal{T}\left(z\right) \end{bmatrix} \succeq 0 x,z1min21(x+z1)s.t[xzzHT(z)]0
其中, z 1 z_1 z1表示单快拍向量 z z z中的第一个元素。至此,该问题可以用CVX工具箱来求解了。

核范数最小化

核范数(矩阵奇异值的和)的定义如下:
∥ T ( z ) ∥ ∗ = T r ( T H ( z ) T ( z ) ) \|\mathcal{T}(z)\|_* = Tr\left(\sqrt{\mathcal{T}^H(z)\mathcal{T}(z)}\right) T(z)=Tr(TH(z)T(z) )
核范数 ∥ T ( z ) ∥ ∗ \|\mathcal{T}(z)\|_* T(z)是一个凸函数,证明如下:

由于 ∥ T ( z ) ∥ ∗ \|\mathcal{T}(z)\|_* T(z) ∥ T ( z ) ∥ 2 \|\mathcal{T}(z)\|_2 T(z)2为一对对偶范数,因此,若 ∥ T ( z ) ∥ 2 \|\mathcal{T}(z)\|_2 T(z)2为凸函数,那么 ∥ T ( z ) ∥ ∗ \|\mathcal{T}(z)\|_* T(z)即为凸函数。
∥ T ∥ 2 = sup ⁡ u , v { u H T v : ∥ u ∥ 2 = 1 , ∥ v ∥ 2 = 1 } \|\mathcal{T}\|_2 = \sup_{\boldsymbol{u},\boldsymbol{v}}\{\boldsymbol{u}^H\mathcal{T}\boldsymbol{v} : \|\mathcal{u}\|_2=1,\|\mathcal{v}\|_2=1\} T2=u,vsup{uHTv:u2=1,v2=1}
向量 u \boldsymbol{u} u v \boldsymbol{v} v为各个奇异值对应的向量, u H T v \boldsymbol{u}^H\mathcal{T}\boldsymbol{v} uHTv是对 T \mathcal{T} T的仿射变换,因此凸。由下面”逐点上确界“的性质,所以 ∥ T ∥ 2 \|\mathcal{T}\|_2 T2凸。
f ( x ) = sup ⁡ y , z { g ( x , y , z ) : y ∈ A y , z ∈ A z } f(x) = \sup_{y,z}\{g(x,y,z):y\in\mathcal{A}_y,z\in\mathcal{A}_z\} f(x)=y,zsup{g(x,y,z):yAy,zAz}
g g g为凸函数,那么 f f f亦为凸函数,因而 ∥ T ( z ) ∥ ∗ \|\mathcal{T}(z)\|_* T(z)的凸性得证。

而取矩阵秩的操作的最紧凸松弛为核范数,所以,可以将之前的非凸问题转换成:
min ⁡ x , z ∥ T ( z ) ∥ ∗ s . t [ x z H z T ( z ) ] ⪰ 0 \min_{x,z}\|\mathcal{T}(z)\|_* \\ s.t \quad \begin{bmatrix} x & \boldsymbol{z}^H \\ \boldsymbol{z} & \mathcal{T}\left(z\right) \end{bmatrix} \succeq 0 x,zminT(z)s.t[xzzHT(z)]0
该问题也可以通过CVX工具箱来求解。

变换为矩阵的迹

由于半正定的Hermitian Toeplitz矩阵 ∥ T ( z ) ∥ \|\mathcal{T}(z)\| T(z),所以其存在唯一的范德蒙分解:
T ( z ) = ∑ k = 1 r p k a ( θ k ) a H ( θ k ) \mathcal{T}\left(z\right) = \sum_{k=1}^{r}p_k\boldsymbol{a}(\theta_k)\boldsymbol{a}^H(\theta_k) T(z)=k=1rpka(θk)aH(θk)
取该矩阵的迹:
T r ( T ( z ) ) = L ∑ k = 1 r p k ∥ z ∥ A , 1 = ∑ k = 1 r p k = T r ( T ( z ) ) / L Tr(\mathcal{T}\left(z\right)) = L\sum_{k=1}^{r}p_k \\ \|z\|_{\mathcal{A},1} = \sum_{k=1}^{r}p_k = Tr(\mathcal{T}\left(z\right)) / L Tr(T(z))=Lk=1rpkzA,1=k=1rpk=Tr(T(z))/L
上式中,第一个等号可以理解为:由于方向向量 a ( θ k ) , k = 1 , 2 , … \boldsymbol{a}(\theta_k),k=1,2,\ldots a(θk),k=1,2, 彼此相互独立,所以只要确定了信号向量 z \boldsymbol{z} z存在由 a ( θ k ) \boldsymbol{a}(\theta_k) a(θk)张成的向量空间中,那么这一组系数 p k , k = 1 , 2 , … , r p_k,k=1,2,\dots,r pk,k=1,2,,r便可唯一确定。因此,取下界操作 inf ⁡ \inf inf就可无视。

因此,该凸问题就转换为:
min ⁡ z T r ( T ( z ) ) s . t T ( z ) ⪰ 0 ; \min_{z} \quad Tr(\mathcal{T}\left(z\right)) \\ s.t \quad \mathcal{T}\left(z\right) \succeq 0; zminTr(T(z))s.tT(z)0;
该问题也可以通过CVX工具箱来求解。

稀疏阵列DOA估计

在这里插入图片描述

step1 通过图(a)中实际布置的天线阵列接收数据 X \boldsymbol{X} X,计算接收阵列的协方差矩阵 R x \boldsymbol{R}_x Rx;

step2 向量化 R x \boldsymbol{R}_x Rx,并排序去冗余,得到图(b)中等效的单快拍信号向量 z e x \boldsymbol{z}_{ex} zex,包括的位置-12~12,空洞处用0元素代替;

step3 z e x \boldsymbol{z}_{ex} zex构造Toeplitz矩阵 R v \boldsymbol{R}_v Rv,另外,定义与 R v \boldsymbol{R}_v Rv同等大小的二进制矩阵 G \boldsymbol{G} G,用来反映 R v \boldsymbol{R}_v Rv有值的位置, z \boldsymbol{z} z代表待恢复的单快拍信号(对应的位置0~12);

step4 用CVX,求解以下任一优化问题,获取重构的Toeplitz矩阵 T ( z ) \mathcal{T}\left(z\right) T(z);
在这里插入图片描述

仿真结果

信噪比 20 d B 20dB 20dB,快拍数 200 200 200,来波方向 − 5 0 ∘ -50^\circ 50 5 0 ∘ 50^\circ 50,间隔 5 ∘ 5^\circ 5,共21个信源。

仿真使用的是增广展开的互质阵列(Augmented-Expanding Co-Prime Array),共10个阵元( M = 3 , N = 5 M=3,N=5 M=3,N=5)。

原子范数最小化 ANM
在这里插入图片描述
核范数最小化 NNM
在这里插入图片描述
最小化迹的方法
在这里插入图片描述
相比之下,ANM算法的效果更好一些。

自己写的代码

如有不足,还望各位在评论区不吝赐教。

clc;clear all;close all;
%%%%%增广展开互质阵列(Augmented-Expanding Co-Prime Array):填充内插阵元算法%%%%%
twpi = 2*pi;
derad = pi/180;
j = sqrt(-1);
c = 1500;%声速
f0 = 1e4;%载频
lambda = c/f0;%波长
dd = lambda/2;%阵元间距
M = 3;%子阵1的阵元数
N = 5;%子阵2的阵元数
kelm = 2*M+N-1;%实际阵元总数
d = [0:-N:(1-2*M)*N,M:M:(N-1)*M];%展开扩展互质阵
D = zeros(1,kelm*kelm);
for m=1:kelm
    D(1,(m-1)*kelm+1:m*kelm) = d-d(m);
end
[loc,index] = sort(D);
%%%%%构造排序去冗余矩阵FD%%%%%
indD = unique(D);%去除重复项
dof = length(indD);%阵列自由度
FD = zeros(dof,length(D));
for ii=1:length(D)
    count = length(find(D(ii)==D));
    temp = find(D(ii)==indD);
    FD(temp,ii) = 1/count;
end
%%%%%接收端%%%%%
d = d*dd;
% theta = [-0.1 0.1];%高精度到达角方向
theta = -45:6:45;%多到达角
iwave = length(theta);%信源数
snr = 30;%信噪比
n = 500;%采样数
fs = 2*f0;%采样频率
t = [1:n]/fs;
Amp = randn(iwave,n);
S = Amp.*(ones(iwave,1)*exp(j*twpi*(f0*t)));%独立信源
Ar = exp(j*twpi*d.'*sin(theta*derad)/lambda);
X = awgn(Ar*S,snr,'measured');
Rx = X*X'/n;
z = reshape(Rx,kelm*kelm,1);%转换为向量形式,成单快拍形式
%%%%%构造虚拟单快拍接收矢量:排序去冗余%%%%%
dm = unique(D);
zD = FD*z;
LD = (dof+1)/2;

%%%%%构造RD矩阵%%%%%
RD = zeros(LD,LD);%重构的协方差矩阵
for mr = 1:LD
    temp = LD+1-mr;
    RD(:,mr) = zD(temp:temp+LD-1);
end
vec_RD = reshape(RD,LD*LD,1);
%%%%%增加阵列自由度%%%%%
dm_ex = min(dm):1:max(dm);
zV = zeros(max(dm)-min(dm)+1,1);
dmax = max(dm);
for ii=1:dof
    zV(dm(ii)+dmax+1,1) = zD(ii,1);
end
%%%%%构造RV矩阵%%%%%%
LV = (length(zV)+1)/2;%Teoplitz矩阵大小
RV = zeros(LV,LV);%重构的协方差矩阵
for mr = 1:LV
    temp = LV+1-mr;
    RV(:,mr) = zV(temp:temp+LV-1);
end

%%%%%构造选择矩阵G%%%%%
G = ones(LV,LV);
posi0V = find(RV==0);
G(posi0V) = 0;

%%%%%利用CVX工具箱求解凸优化问题%%%%%
mu = 0.25;
cvx_begin sdp quiet
% cvx_precision high
cvx_solver sdpt3
    variable T(LV,LV) hermitian toeplitz semidefinite;
    minimize( square_pos(norm(T .* G - RV,'fro')) + mu * trace(T) )	%目标函数
cvx_end

%%%%%%%%%%构造MUSIC的谱函数%%%%%%%%%%%
[EV,Dv] = eig(T);%特征值分解
DD = diag(Dv);%将特征值变为向量形式
[DD,I] = sort(DD);%从小到大
DD = fliplr(DD');%翻转函数,从大到小
EV = fliplr(EV(:,I));
En = EV(:,iwave+1:end);%噪声子空间
dm_ss = dm_ex(1:LV)*dd;
for ii = 1:2001
    angle(ii) = (ii-1001)*90/1000;
    phim = derad*angle(ii);
    a = exp(j*twpi*dm_ss*sin(phim)/lambda).';
    Pmusic(ii) = 1/(a'*En*En'*a);
end
Pmusic = abs(Pmusic);
Pmax = max(Pmusic);
Pmusic_db = 10*log10(Pmusic/Pmax);
% [maxv_music,maxl_music]=findpeaks(Pmusic_db,'minpeakdistance',0.001,'minpeakheight',mean(Pmusic_db));
% [vl,ind] = sort(maxv_music,'descend');
% doa = angle(maxl_music(ind(1:iwave)));
h = plot(angle,Pmusic_db);
set(h,'Linewidth',0.2)
xlabel('angle(degree)')
ylabel('magnitude(dB)')
xlim([-90 90])
set(gca,'XTick',[-90:10:90])
grid on
hold on
m = ylim;
for i = 1:iwave
    line([theta(i) theta(i)],[m(1) 0],'Color','k','LineWidth',0.1,'LineStyle','--');
    hold on
end
legend('ANM','Direction of Arrival');

相关文献与博客

下载文献ANM
提取码:6666

一个大佬的博客,数学证明很详细

  • 43
    点赞
  • 121
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 34
    评论
宽带频谱感知技术要实现直接观测宽带频谱, 然后检测出其中所有的主用户信号,需要极高的采样速率并处理海量的数据。 由于压缩感知理论为实现低速率宽带频谱感知提供了理论基础, 因此宽带压缩频谱感知技术成为一个重要的研究方向。 然而, 传统压缩感知模型会对频域离散化, 产生基不匹配问题, 从而降低对主用户信号频率估计的准确性。 此外, 主用户的通信行为是未知且随时间而变化的, 导致宽带频谱稀疏结构的动态变化, 给宽带压缩频谱感知带来困难。 另一方面, 由于无线信号受多径效应和其他因素的影响, 可能存在认知用户接收到某个主用户信号能量过低而无法准确检测到该主用户信号存在的情况, 造成感知性能下降。 这些都是宽带压缩频谱感知客观存在且急需解决的问题。 根据宽带压缩频谱感知技术的研究现状, 将目前存在的困难总结成四点, 即准确性、 实时性、动态性、衰落性。本文的研究内容围绕这四点展开,研究层次由浅入深逐渐递进。 首先, 根据原子范数和无网格压缩感知理论,建立基于原子范数的宽带压缩频谱感知模型, 并提出求解该模型的快速算法, 实现高斯信道下的静态宽带压缩频谱感知;然后, 结合卡尔曼滤波器理论, 建立动态宽带压缩频谱感知模型,实现高斯信道下的动态宽带压缩频谱感知;最后, 利用联合频谱感知方法, 建立基于原子 MMV 的宽带压缩频谱感知模型,实现频率非选择性慢衰落信道下的宽带压缩频谱感知。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大灰煜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值