解耦原子范数最小化(Decoupled Atomic Norm Minimization)

解耦原子范数最小化

解耦原子范数最小化(DANM)的产生

首先,定义一个矩阵形式(与其对应的是向量形式)的原子集:
A = { a x ( θ ) a y H ( θ ) : θ ∈ [ − π 2 , π 2 ] , a x ( θ ) ∈ C N × 1 , a y ( θ ) ∈ C M × 1 } \mathcal{A}=\{\boldsymbol{a}_x(\theta)\boldsymbol{a}_y^H(\theta):\theta\in[-\frac{\pi}{2},\frac{\pi}{2}],\boldsymbol{a}_x(\theta)\in\mathbb{C}^{N\times1},\boldsymbol{a}_y(\theta)\in\mathbb{C}^{M\times1}\} A={ax(θ)ayH(θ):θ[2π,2π],ax(θ)CN×1,ay(θ)CM×1}
在DOA估计问题中, a x ( θ ) , a y ( θ ) \boldsymbol{a}_x(\theta),\boldsymbol{a}_y(\theta) ax(θ),ay(θ)分别表示两条阵列的方向向量, Z ∈ C N × M \boldsymbol{Z}\in\mathbb{C}^{N\times M} ZCN×M往往表示两个阵列的互协方差矩阵。那么,具体的解耦原子范数为:
∥ Z ∥ A = inf ⁡ { ∑ k ∣ s k ∣ : Z = ∑ k s k a x ( θ k ) a y H ( θ k ) , a x ( θ k ) a y H ( θ k ) ∈ A } \|\boldsymbol{Z}\|_\mathcal{A}=\inf\{\sum_{k}|s_k|:\boldsymbol{Z}=\sum_{k}s_k\boldsymbol{a}_x(\theta_k)\boldsymbol{a}_y^H(\theta_k),\boldsymbol{a}_x(\theta_k)\boldsymbol{a}_y^H(\theta_k)\in\mathcal{A}\} ZA=inf{ksk:Z=kskax(θk)ayH(θk),ax(θk)ayH(θk)A}
l 1 l_1 l1原子范数最小化(ANM)类似,解耦原子范数最小化问题表述为:
min ⁡ Z ∥ Z ∥ A s . t ∥ Z − Z ^ ∥ ≤ η \min_{\boldsymbol{Z}}\|\boldsymbol{Z}\|_{\mathcal{A}} \\ s.t \quad \|\boldsymbol{Z}-\boldsymbol{\hat{Z}}\| \leq \eta ZminZAs.tZZ^η
该问题可以转换为半正定规划(SDP)问题。

转化为SDP问题

证明内容在下一节,转化后的SDP问题表述为:
在这里插入图片描述

转化为该SDP问题的过程中,有以下前提(达到其中一个就可),是不可忽略的。
Δ x = min ⁡ i ≠ j ∣ f x , i − f x , j ∣ ≥ 1 ⌊ ( N − 1 ) / 4 ⌋ Δ y = min ⁡ i ≠ j ∣ f y , i − f y , j ∣ ≥ 1 ⌊ ( M − 1 ) / 4 ⌋ \Delta_x = \min_{i\ne j}|f_{x,i}-f_{x,j}| \geq \frac{1}{\lfloor(N-1)/4\rfloor} \\ \Delta_y = \min_{i\ne j}|f_{y,i}-f_{y,j}| \geq \frac{1}{\lfloor(M-1)/4\rfloor} Δx=i=jminfx,ifx,j(N1)/41Δy=i=jminfy,ify,j(M1)/41
在上式中,第k个信号在x阵列和y阵列上相邻的阵元间产生的相位差分别为: 2 π f x , k 2\pi f_{x,k} 2πfx,k 2 π f x , k 2\pi f_{x,k} 2πfx,k,其方向向量亦可表述为: a x ( f k ) \boldsymbol{a}_x(f_k) ax(fk) a y ( f k ) \boldsymbol{a}_y(f_k) ay(fk) T ( z ) \mathcal{T}(\boldsymbol{z}) T(z)表示以向量 z \boldsymbol{z} z产生一个同尺寸的Hermitian-Toeplitz矩阵。

SDP问题转化的证明

在忽略变量 Z \boldsymbol{Z} Z的情况下,定义目标函数为:
g ( z 1 , z 2 ) = 1 2 M N ( T r ( T ( z 1 ) ) + T r ( T ( z 2 ) ) ) g(\boldsymbol{z}_1,\boldsymbol{z}_2)=\frac{1}{2\sqrt{MN}}\left(Tr(\mathcal{T}(\boldsymbol{z}_1))+Tr(\mathcal{T}(\boldsymbol{z}_2))\right) g(z1,z2)=2MN 1(Tr(T(z1))+Tr(T(z2)))
其中,
( z 1 , z 2 ) ∈ S Z + = { ( z 1 , z 2 ) : [ T ( z 2 ) Z H Z T ( z 1 ) ] ⪰ 0 } (\boldsymbol{z}_1,\boldsymbol{z}_2)\in \mathcal{S}_{\boldsymbol{Z}}^{+}=\left\{(\boldsymbol{z}_1,\boldsymbol{z}_2): \begin{bmatrix} \mathcal{T}(\boldsymbol{z}_2) & \boldsymbol{Z}^H \\ \boldsymbol{Z} & \mathcal{T}(\boldsymbol{z}_1) \end{bmatrix} \succeq 0 \right\} (z1,z2)SZ+={(z1,z2):[T(z2)ZZHT(z1)]0}
所以,要证明以上优化问题的等效,只需证明以下等式即可。
g ∗ = min ⁡ ( z 1 , z 2 ) ∈ S Z + g ( z 1 , z 2 ) = ∥ Z ∥ A g^{*}=\min_{(\boldsymbol{z}_1,\boldsymbol{z}_2)\in \mathcal{S}_{\boldsymbol{Z}}^{+}}g(\boldsymbol{z}_1,\boldsymbol{z}_2)=\|\boldsymbol{Z}\|_{\mathcal{A}} g=(z1,z2)SZ+ming(z1,z2)=ZA
先证明 g ∗ ≤ ∥ Z ∥ A g^{*}\leq \|\boldsymbol{Z}\|_{\mathcal{A}} gZA成立。

引理1:如果数据矩阵 Z ∈ C N × M \boldsymbol{Z}\in\mathbb{C}^{N\times M} ZCN×M f f f上足够可分,即在原子集 A \mathcal{A} A中,有足够多的原子 a x ( f ) a y H ( f ) \boldsymbol{a}_x(f)\boldsymbol{a}^H_y(f) ax(f)ayH(f)。那么,当数据矩阵 Z \boldsymbol{Z} Z确定时,它就有唯一的稀疏原子分解。在此情况下,得到了:
∥ Z ∥ A = ∑ k ∣ s k ∣ \|\boldsymbol{Z}\|_{\mathcal{A}} = \sum_{k}|s_k| ZA=ksk

在引理1的条件下,直接写出数据矩阵 Z \boldsymbol{Z} Z的唯一原子分解为:
Z = ∑ k s k a x ( f k ) a y H ( f k ) \boldsymbol{Z}=\sum_{k}s_k\boldsymbol{a}_x(f_k)\boldsymbol{a}^H_y(f_k) Z=kskax(fk)ayH(fk)
直接构造矩阵 T ( z ~ 1 ) \mathcal{T}(\boldsymbol{\tilde{z}}_1) T(z~1) T ( z ~ 2 ) \mathcal{T}(\boldsymbol{\tilde{z}}_2) T(z~2)
T ( z ~ 1 ) = ∑ k M N ∣ s k ∣ a x ( f k ) a x H ( f k ) T ( z ~ 2 ) = ∑ k N M ∣ s k ∣ a y ( f k ) a y H ( f k ) \mathcal{T}(\boldsymbol{\tilde{z}}_1) = \sum_{k}{\sqrt{\frac{M}{N}}|s_k|\boldsymbol{a}_x(f_k)\boldsymbol{a}^H_x(f_k)} \\ \mathcal{T}(\boldsymbol{\tilde{z}}_2) = \sum_{k}{\sqrt{\frac{N}{M}}|s_k|\boldsymbol{a}_y(f_k)\boldsymbol{a}^H_y(f_k)} T(z~1)=kNM skax(fk)axH(fk)T(z~2)=kMN skay(fk)ayH(fk)
显然,它们都是Hermitian-Toeplitz矩阵,分别将 Z , T ( z ~ 1 ) , T ( z ~ 2 ) \boldsymbol{Z},\mathcal{T}(\boldsymbol{\tilde{z}}_1),\mathcal{T}(\boldsymbol{\tilde{z}}_2) Z,T(z~1),T(z~2)代入约束条件中,得到:
[ T ( z ~ 2 ) Z H Z T ( z ~ 1 ) ] = ∑ k ∣ s k ∣ M N [ N a y ( f k ) s i g n ( s k ) M a x ( f k ) ] [ N a y ( f k ) s i g n ( s k ) M a x ( f k ) ] H ⪰ 0 \begin{bmatrix} \mathcal{T}(\boldsymbol{\tilde{z}}_2) & \boldsymbol{Z}^H \\ \boldsymbol{Z} & \mathcal{T}(\boldsymbol{\tilde{z}}_1) \end{bmatrix} = \sum_{k}\frac{|s_k|}{\sqrt{MN}}\begin{bmatrix} \sqrt{N}\boldsymbol{a}_y(f_k) \\ sign(s_k)\sqrt{M}\boldsymbol{a}_x(f_k)\end{bmatrix} {\begin{bmatrix} \sqrt{N}\boldsymbol{a}_y(f_k) \\ sign(s_k)\sqrt{M}\boldsymbol{a}_x(f_k)\end{bmatrix}}^H \succeq 0 [T(z~2)ZZHT(z~1)]=kMN sk[N ay(fk)sign(sk)M ax(fk)][N ay(fk)sign(sk)M ax(fk)]H0
上式成立,说明向量 z ~ 1 \boldsymbol{\tilde{z}}_1 z~1 z ~ 2 \boldsymbol{\tilde{z}}_2 z~2 g ( z 1 , z 2 ) g(\boldsymbol{z}_1,\boldsymbol{z}_2) g(z1,z2)的一组可行解,代入目标函数中,得到:
g ( z ~ 1 , z ~ 2 ) = 1 2 M N ( T r ( T ( z ~ 1 ) ) + T r ( T ( z ~ 2 ) ) ) = ∑ k ∣ s k ∣ g(\boldsymbol{\tilde{z}}_1,\boldsymbol{\tilde{z}}_2)=\frac{1}{2\sqrt{MN}}\left(Tr(\mathcal{T}(\boldsymbol{\tilde{z}}_1))+Tr(\mathcal{T}(\boldsymbol{\tilde{z}}_2))\right)=\sum_{k}|s_k| g(z~1,z~2)=2MN 1(Tr(T(z~1))+Tr(T(z~2)))=ksk
巧了, ∑ k ∣ s k ∣ = ∥ Z ∥ A \sum_{k}|s_k|=\|\boldsymbol{Z}\|_{\mathcal{A}} ksk=ZA刚好成立, g g g的可行解对应着 ∥ Z ∥ A \|\boldsymbol{Z}\|_{\mathcal{A}} ZA,那么, g g g的最优解 g ∗ g^* g必然小于可行解,即:
g ∗ ≤ g ( z ~ 1 , z ~ 2 ) = ∥ Z ∥ A g^*\leq g(\boldsymbol{\tilde{z}}_1,\boldsymbol{\tilde{z}}_2) = \|\boldsymbol{Z}\|_{\mathcal{A}} gg(z~1,z~2)=ZA
得证。

接下来,再证明 g ∗ ≥ ∥ Z ∥ A g^{*}\geq \|\boldsymbol{Z}\|_{\mathcal{A}} gZA成立。
此时,引入一个新的原子集,叫做“多测量向量(MMV)原子集”,它有如下的定义:
A x = { a x ( f ) e M H : ∀ f ∈ [ 0 , 1 ] , ∀ e M ∈ C M × 1 , ∥ e M ∥ = 1 } \mathcal{A_x}=\{\boldsymbol{a}_x(f)\boldsymbol{e}^H_M:\forall f\in [0,1],\forall \boldsymbol{e}_M\in\mathbb{C}^{M\times 1},\|\boldsymbol{e}_M\|=1 \} Ax={ax(f)eMH:f[0,1],eMCM×1,eM=1}
对于MMV问题,它有以下有用的结论:

引理2:对于任意的一个能够在MMV原子集上线性可分的数据矩阵 Z ∈ C N × M \boldsymbol{Z}\in \mathbb{C}^{N\times M} ZCN×M,它在 A x \mathcal{A_x} Ax上的原子范数可由以下SDP问题算出:
∥ Z ∥ A x = min ⁡ V , z { 1 2 N ( T r ( V ) + T r ( T ( z ) ) ) } s . t [ V Z H Z T ( z ) ] ⪰ 0 \|\boldsymbol{Z}\|_{\mathcal{A_x}}=\min_{\boldsymbol{V},\boldsymbol{z}}\left\{\frac{1}{2\sqrt{N}}(Tr(\boldsymbol{V})+Tr(\mathcal{T}(\boldsymbol{z}))) \right\} \quad s.t \begin{bmatrix} \boldsymbol{V} & \boldsymbol{Z}^H \\ \boldsymbol{Z} & \mathcal{T}(\boldsymbol{z}) \end{bmatrix} \succeq 0 ZAx=V,zmin{2N 1(Tr(V)+Tr(T(z)))}s.t[VZZHT(z)]0
其中, V ∈ C M × M \boldsymbol{V}\in \mathbb{C}^{M\times M} VCM×M是一个Hermitian矩阵, T ( z ) ∈ C N × N \mathcal{T}(\boldsymbol{z})\in \mathbb{C}^{N\times N} T(z)CN×N是一个Toeplitz矩阵。

引理3:如果 Z = ∑ k s k a x ( f k ) e M H \boldsymbol{Z}=\sum_{k}s_k\boldsymbol{a}_x(f_k)\boldsymbol{e}^H_M Z=kskax(fk)eMH a x ( f k ) e M H \boldsymbol{a}_x(f_k)\boldsymbol{e}^H_M ax(fk)eMH是MMV集合中的原子,满足以下的频率可分条件:
Δ x = min ⁡ i ≠ j ∣ f x , i − f x , j ∣ ≥ 1 ⌊ ( N − 1 ) / 4 ⌋ \Delta_x = \min_{i\ne j}|f_{x,i}-f_{x,j}|\geq \frac{1}{\lfloor(N-1)/4\rfloor} Δx=i=jminfx,ifx,j(N1)/41
那么,就可以保证:
∥ Z ∥ A x = ∑ k ∣ s k ∣ \|\boldsymbol{Z}\|_{\mathcal{A_x}}=\sum_{k}|s_k| ZAx=ksk
这一点也正好对应了转换成SDP问题的前提条件。

有了这两个引理做铺垫,我们就可以完成证明。
不失一般性的,我们考虑x轴满足前提条件:
Δ x = min ⁡ i ≠ j ∣ f x , i − f x , j ∣ ≥ 1 ⌊ ( N − 1 ) / 4 ⌋ \Delta_x = \min_{i\ne j}|f_{x,i}-f_{x,j}|\geq \frac{1}{\lfloor(N-1)/4\rfloor} Δx=i=jminfx,ifx,j(N1)/41
根据引理1,在解耦原子范数集 A \mathcal{A} A下,它有唯一的分解为:
Z = ∑ k s k a x ( f k ) a y H ( f k ) = ∑ k s k ∥ a y H ( f k ) ∥ 2 a x ( f k ) a y H ( f k ) ∥ a y H ( f k ) ∥ 2 = ∑ k ( M s k ) a x ( f k ) a y H ( f k ) ∥ a y H ( f k ) ∥ 2 \begin{aligned} \boldsymbol{Z}=\sum_{k}s_k\boldsymbol{a}_x(f_k)\boldsymbol{a}^H_y(f_k)&=\sum_{k}s_k\|\boldsymbol{a}^H_y(f_k)\|_2\boldsymbol{a}_x(f_k)\frac{\boldsymbol{a}^H_y(f_k)}{\|\boldsymbol{a}^H_y(f_k)\|_2} \\ &= \sum_{k}(\sqrt{M}s_k)\boldsymbol{a}_x(f_k)\frac{\boldsymbol{a}^H_y(f_k)}{\|\boldsymbol{a}^H_y(f_k)\|_2} \end{aligned} Z=kskax(fk)ayH(fk)=kskayH(fk)2ax(fk)ayH(fk)2ayH(fk)=k(M sk)ax(fk)ayH(fk)2ayH(fk)
显然, a x ( f k ) a y H ( f k ) ∥ a y H ( f k ) ∥ 2 ∈ A x \frac{\boldsymbol{a}_x(f_k)\boldsymbol{a}^H_y(f_k)}{\|\boldsymbol{a}^H_y(f_k)\|_2} \in \mathcal{A_x} ayH(fk)2ax(fk)ayH(fk)Ax。另外,由于引理3,所以可以将其MMV原子范数表示为:
∥ Z ∥ A x = M ∑ k ∣ s k ∣ \|\boldsymbol{Z}\|_{\mathcal{A_x}}=\sqrt{M}\sum_{k}|s_k| ZAx=M ksk
同时,
∥ Z ∥ A = ∑ k ∣ s k ∣ \|\boldsymbol{Z}\|_{\mathcal{A}}=\sum_{k}|s_k| ZA=ksk
因此,数据矩阵 Z \boldsymbol{Z} Z的两种原子范数的联系就建立起来了:
∥ Z ∥ A = 1 M ∥ Z ∥ A x \|\boldsymbol{Z}\|_{\mathcal{A}}=\frac{1}{\sqrt{M}}\|\boldsymbol{Z}\|_{\mathcal{A_x}} ZA=M 1ZAx
由于引理2,那么,取 V = T ( z 2 ) \boldsymbol{V}=\mathcal{T}(\boldsymbol{z_2}) V=T(z2) z = z 1 \boldsymbol{z}=\boldsymbol{z_1} z=z1
∥ Z ∥ A = min ⁡ z 1 , z 2 { 1 2 M N ( T r ( T ( z 1 ) ) + T r ( T ( z 2 ) ) ) } = min ⁡ z 1 , z 2 g ( z 1 , z 2 ) ≤ { g ( z ~ 1 , z ~ 2 ) : ( z ~ 1 , z ~ 2 ) ∈ S Z + } \begin{aligned} \|\boldsymbol{Z}\|_{\mathcal{A}}=&\min_{\boldsymbol{z_1},\boldsymbol{z_2}}\left\{\frac{1}{2\sqrt{MN}}(Tr(\mathcal{T}(\boldsymbol{z_1}))+Tr(\mathcal{T}(\boldsymbol{z_2}))) \right\}=\min_{\boldsymbol{z_1},\boldsymbol{z_2}}{g(\boldsymbol{z_1},\boldsymbol{z_2})} \\ \leq & \{g(\boldsymbol{\tilde{z}}_1,\boldsymbol{\tilde{z}}_2):(\boldsymbol{\tilde{z}}_1,\boldsymbol{\tilde{z}}_2) \in \mathcal{S}_{\boldsymbol{Z}}^{+}\} \end{aligned} ZA=z1,z2min{2MN 1(Tr(T(z1))+Tr(T(z2)))}=z1,z2ming(z1,z2){g(z~1,z~2):(z~1,z~2)SZ+}
上式最后一项是可行解对应的目标集,由于 g ∗ g^* g也是可行解对应的目标之一,所以,
∥ Z ∥ A ≤ g ∗ \|\boldsymbol{Z}\|_{\mathcal{A}} \leq g^* ZAg
证毕。

min ⁡ ( z 1 , z 2 ) ∈ S Z + g ( z 1 , z 2 ) = ∥ Z ∥ A \min_{(\boldsymbol{z}_1,\boldsymbol{z}_2)\in \mathcal{S}_{\boldsymbol{Z}}^{+}}g(\boldsymbol{z}_1,\boldsymbol{z}_2)=\|\boldsymbol{Z}\|_{\mathcal{A}} (z1,z2)SZ+ming(z1,z2)=ZA
结论得证。因而,当数据矩阵 Z \boldsymbol{Z} Z不确定时,关于它的优化问题等价为:
min ⁡ Z min ⁡ ( z 1 , z 2 ) ∈ S Z + g ( z 1 , z 2 ) = min ⁡ Z ∥ Z ∥ A = min ⁡ z 1 , z 2 , Z g ( z 1 , z 2 ) s . t [ T ( z 2 ) Z H Z T ( z 1 ) ] ⪰ 0 \min_{\boldsymbol{Z}}\min_{(\boldsymbol{z}_1,\boldsymbol{z}_2)\in \mathcal{S}_{\boldsymbol{Z}}^{+}}g(\boldsymbol{z}_1,\boldsymbol{z}_2)=\min_{\boldsymbol{Z}}\|\boldsymbol{Z}\|_{\mathcal{A}}=\min_{\boldsymbol{z}_1,\boldsymbol{z}_2,\boldsymbol{Z}}g(\boldsymbol{z}_1,\boldsymbol{z}_2) \quad s.t \begin{bmatrix} \mathcal{T}(\boldsymbol{z}_2) & \boldsymbol{Z}^H \\ \boldsymbol{Z} & \mathcal{T}(\boldsymbol{z}_1) \end{bmatrix} \succeq 0 Zmin(z1,z2)SZ+ming(z1,z2)=ZminZA=z1,z2,Zming(z1,z2)s.t[T(z2)ZZHT(z1)]0
等价问题得证。

参考文献和博客

下载参考文献
提取码:6666
博客:原子范数最小化参考博客

宽带频谱感知技术要实现直接观测宽带频谱, 然后检测出其中所有的主用户信号,需要极高的采样速率并处理海量的数据。 由于压缩感知理论为实现低速率宽带频谱感知提供了理论基础, 因此宽带压缩频谱感知技术成为一个重要的研究方向。 然而, 传统压缩感知模型会对频域离散化, 产生基不匹配问题, 从而降低对主用户信号频率估计的准确性。 此外, 主用户的通信行为是未知且随时间而变化的, 导致宽带频谱稀疏结构的动态变化, 给宽带压缩频谱感知带来困难。 另一方面, 由于无线信号受多径效应和其他因素的影响, 可能存在认知用户接收到某个主用户信号能量过低而无法准确检测到该主用户信号存在的情况, 造成感知性能下降。 这些都是宽带压缩频谱感知客观存在且急需解决的问题。 根据宽带压缩频谱感知技术的研究现状, 将目前存在的困难总结成四点, 即准确性、 实时性、动态性、衰落性。本文的研究内容围绕这四点展开,研究层次由浅入深逐渐递进。 首先, 根据原子范数和无网格压缩感知理论,建立基于原子范数的宽带压缩频谱感知模型, 并提出求解该模型的快速算法, 实现高斯信道下的静态宽带压缩频谱感知;然后, 结合卡尔曼滤波器理论, 建立动态宽带压缩频谱感知模型,实现高斯信道下的动态宽带压缩频谱感知;最后, 利用联合频谱感知方法, 建立基于原子 MMV 的宽带压缩频谱感知模型,实现频率非选择性慢衰落信道下的宽带压缩频谱感知。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大灰煜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值