M序列测量幅频特性

M序列是一种伪随机序列,常用于信道噪声测试和保密通信。通过N阶线性反馈移存器生成,周期为2^N-1。文章介绍了如何用M序列测量频率响应,特别是通过ADC采样和FFT分析滤波器的幅频特性。在MATLAB中,使用本原多项式生成M序列,并通过滤波及FFT计算,展示滤波器的频率响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

M序列

  M 序列是一种伪随机序列,具有很好的伪噪声特性,常用于信道噪声测试和保密通信。不过 M 序列还有一个用途,也就是本文所介绍的——通过 M 序列测量频率响应。在讨论这个问题之前,我们先介绍 M 序列的特征与生成方法。

  M 序列通过 N 阶线性反馈移存器生成,其周期为 2 N − 1 2^N-1 2N1

在这里插入图片描述

如上图所示,反馈到最左端的信号为
a n = ∑ i = 1 n c i a n − i   ( m o d   2 ) a_n=\sum_{i=1}^{n}c_ia_{n-i}\ (mod\ 2) an=i=1nciani (mod 2)
经过 k k k 次移位后的输出为
a k = ∑ i = 1 n c i a k − i   ( m o d   2 ) a_k=\sum_{i=1}^{n}c_ia_{k-i}\ (mod\ 2) ak=i=1nciaki (mod 2)
  用特征多项式表示反馈的连接状态
f ( x ) = c n x n + c n − 1 x n − 1 + ⋯ + c 1 x + c 0 = ∑ i = 0 n c i x i f(x)=c_nx_n+c_{n-1}x^{n-1}+\dots+c_1x+c_0=\sum_{i=0}^nc_ix^i f(x)=cnxn+cn1xn1++c1x+c0=i=0ncixi
由于连接状态中, c 0 、 c n c_0、c_n c0cn 均为 1,因此特征多项式必然包含 x n + 1 x^n+1 xn+1 ,特征多项式的次数 n 即是移存器的级数。

  输出序列用多项式表示(母函数)
G ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ = ∑ i = 0 ∞ a i x i G(x)=a_0+a_1x+a_2x^2+\cdots=\sum_{i=0}^\infin a_ix^i G(x)=a0+a1x+a2x2+=i=0aixi
本原多项式:若一个多项式满足:1. f ( x ) f(x) f(x) 是既约的;2. f ( x ) f(x) f(x) 可以整除 2 m + 1 2^m+1 2m+1 m = 2 n − 1 m=2^n-1 m=2n1 ;3. f ( x ) f(x) f(x) 除不尽 2 q + 1 2^q+1 2q+1 q < m q<m q<m ;则称该多项式为本原多项式。

  当特征多项式为本原多项式时,反馈移存器的输出序列为 M 序列。

matlab 实现

% M 序列生成器
% @mg: M序列
% @f : 本原多项式
% a(k)=mod(sum_1^n(c(i)*a(k-i)),2)
function mg=m_generator(f)
    f=dec2bin(f)-'0';
    n=length(f)-1;    %M序列阶数
    N=2^n-1;          %伪随机码的周期
    register=[zeros(1,n-1),1];
    newregister=zeros(1,n);
    mg=zeros(1,N);
    f_inv=f(end-1:-1:1);
    for i=1:N
        newregister(1)=mod(sum(f_inv.*register),2);
        newregister(2:n)=register(1:n-1);
        register=newregister;
        mg(i)=register(n);
    end
end
% 测试
clc,clear,close all

N=10;   % 阶数
L=2^N-1;
F=primpoly(N,'all'); %显示该阶数下的全部本原多项式

mg=m_generator(F(1)); %使用一个本原多项式生成m序列

M序列测量滤波器频率响应

  通常测量某一系统的幅频响应,是通过扫频来完成的,然而需要时间较长,还需要实现 DDS,比较复杂。而考虑到 m 序列具有白谱,因此测量经过滤波器后的 m 序列的值,并做 DFT,即可获知滤波器的幅频特性。

  假设生成 10 阶 M 序列(1023 点),以 256 k H z 256kHz 256kHz 的比特速率发送该序列,经过滤波器后,以同样的采样率用 ADC 采样,则频率分辨率为 256 k H z / 1023 = ∼ 250 H z 256kHz/1023=\sim 250Hz 256kHz/1023=250Hz

%---------m序列--------
clc,clear,close all

N=10; 
L=2^N-1;
F=primpoly(N,'all'); %显示该阶数下的全部本原多项式

mg=m_generator(F(1))'*2-1;

%% m序列幅频特性
fs=256e3;
freq=fs*(0:(L/2))/L;

mg_fft=fft(mg)/L*2;
plot(freq/1e3,abs(mg_fft(1:floor(L/2)+1)))  %幅频显示为白谱
xlabel('f/kHz')

%% 滤波
mg2=smooth(mg);

mg2_fft=fft(mg2)/L*2;
figure
plot(freq/1e3,abs(mg2_fft(1:floor(L/2)+1))) %滤波器幅频特性曲线
xlabel('f/kHz')

测试中使用了平滑滤波器,测得的滤波器频率响应如下

在这里插入图片描述

<think>好的,我现在需要帮助用户了解如何通过PrometheusJMX ExporterGrafana监控Hadoop集群的具体配置与操作流程。首先,我需要回忆之前学过的相关知识,并结合用户提供的引用内容来构建一个清晰的步骤指南。 首先,用户提供的引用中提到了JMX Exporter、PrometheusGrafana的组合。引用1引用2都提到了配置Prometheus来导入JMX数据,而引用3则展示了如何设置Hadoop的环境变量来启用JMX Exporter。因此,我需要将这些信息整合成一个连贯的教程。 接下来,我需要确定步骤的大致流程。通常,监控Hadoop集群需要以下步骤:配置JMX Exporter以暴露Hadoop组件的JMX指标,设置Prometheus来抓取这些指标,然后使用Grafana创建仪表板展示数据。用户可能还关心具体的配置文件导出的指标,以及如何导入现有的Grafana面板。 首先,配置JMX Exporter。根据引用3,用户需要在Hadoop组件的环境变量中添加Java代理,指向jmx_prometheus_javaagent的jar文件对应的配置文件。例如,对于DataNode,需要设置HADOOP_DATANODE_OPTS环境变量,并指定端口配置文件。这可能需要在hadoop-env.sh或其他启动脚本中进行配置。每个Hadoop组件(如NameNode、ResourceManager等)都需要类似的设置,每个使用不同的端口,比如9300、9301等。 然后,需要创建对应的YAML配置文件,比如datanode.yaml,定义JMX收集的规则。这些配置文件需要指定hostPort(Hadoop组件的JMX端口)需要收集的MBean属性。可能需要参考HadoopJMX文档来确定哪些指标重要,确保配置文件正确抓取所需指标。 接下来是配置Prometheus。用户需要编辑prometheus.yml文件,添加多个job,每个对应一个Hadoop组件的JMX Exporter端口。例如,NameNode可能使用localhost:9300,DataNode使用localhost:9301等。每个job需要指定目标地址路径,确保Prometheus能够正确抓取数据。配置完成后,需要重启Prometheus服务,并验证目标是否处于UP状态。 然后是Grafana的配置。用户需要添加Prometheus作为数据源,输入Prometheus的地址端口。之后,可以导入现有的Grafana仪表板,比如Hadoop监控模板,可能需要从Grafana官网或社区寻找合适的仪表板ID,或者手动创建面板。每个面板应展示关键指标,如JVM内存使用、GC时间、HDFS容量、节点状态等。 在过程中,需要注意防火墙设置,确保Prometheus能够访问各个Hadoop组件的JMX Exporter端口。此外,配置文件中的hostPort需要指向正确的Hadoop JMX端口,可能需要查阅Hadoop的配置文档确认默认JMX端口,或者检查hadoop-env.sh中的现有设置。 用户可能遇到的问题包括JMX Exporter无法启动,此时需要检查环境变量是否正确,jar文件路径是否存在。Prometheus抓取失败时,需要检查网络连通性、端口是否正确开放,以及Prometheus的配置是否有语法错误。Grafana面板无数据的话,可能需要确认数据源配置正确,Prometheus中有对应的指标数据。 最后,生成相关问题,可能涉及优化监控配置、处理安全认证、调整采集频率等,帮助用户深入理解监控系统的维护优化。</think>### 通过 Prometheus + JMX Exporter + Grafana 监控 Hadoop 的配置与操作流程 #### **1. 配置 JMX Exporter 暴露 Hadoop 指标** - **步骤说明** Hadoop 组件(如 NameNode、DataNode)的 JMX 指标需通过 `jmx_prometheus_javaagent` 暴露为 Prometheus 可识别的格式。 - **具体操作** 在 Hadoop 组件启动脚本(如 `hadoop-env.sh`)中添加 Java 代理参数,示例(DataNode)[^3]: ```bash export HADOOP_DATANODE_OPTS="$HADOOP_DATANODE_OPTS -javaagent:/path/to/jmx_prometheus_javaagent-0.3.1.jar=9300:/path/to/datanode.yaml" ``` - **参数说明** - `9300`: JMX Exporter 暴露指标的端口 - `datanode.yaml`: 定义指标采集规则的配置文件 - **配置文件示例** (`datanode.yaml`) ```yaml lowercaseOutputName: true rules: - pattern: &#39;Hadoop:service=DataNode,name=DataNodeActivity-<hostname>(.*)&#39; name: hadoop_datanode_$1 labels: component: datanode ``` > 需根据 Hadoop 版本调整 `pattern` 以匹配实际 MBean 名称。 #### **2. 配置 Prometheus 采集数据** - **步骤说明** 在 Prometheus 的 `prometheus.yml` 中添加 Hadoop 组件对应的抓取任务。 - **配置示例** ```yaml scrape_configs: - job_name: &#39;hadoop-datanode&#39; static_configs: - targets: [&#39;datanode-host:9300&#39;] - job_name: &#39;hadoop-namenode&#39; static_configs: - targets: [&#39;namenode-host:9400&#39;] # NameNode 使用不同端口 ``` - **重启 Prometheus** ```bash systemctl restart prometheus ``` - **验证采集状态** 访问 `http://prometheus-host:9090/targets` 确认所有目标状态为 **UP**。 #### **3. 配置 Grafana 展示监控面板** - **步骤 1:添加 Prometheus 数据源** 在 Grafana 中导航至 `Configuration > Data Sources`,填写 Prometheus 地址(如 `http://prometheus-host:9090`)。 - **步骤 2:导入 Hadoop 监控模板** - 通过官方社区搜索 "Hadoop JMX Dashboard",获取模板 ID(如 `12345`)。 - 在 Grafana 中选择 `Create > Import`,输入模板 ID 并关联 Prometheus 数据源。 - **关键监控指标示例** - **JVM 内存使用**:`jvm_memory_bytes_used{area="heap"}` - **HDFS 容量**:`hadoop_namenode_capacity_total` - **DataNode 存活状态**:`up{job="hadoop-datanode"}` #### **4. 指标采集优化与调试** - **常见问题排查** - **JMX Exporter 未启动**:检查 Java 代理路径 YAML 文件权限。 - **Prometheus 无数据**:验证网络连通性(如 `telnet datanode-host 9300`)。 - **指标名称不匹配**:调整 YAML 文件中的 `pattern` 规则[^2]。 --- ### **§§** 1. 如何为 Hadoop ResourceManager 配置 JMX Exporter? 2. Prometheus 如何实现高可用部署以提升监控可靠性? 3. Grafana 中如何自定义 Hadoop 监控告警规则? 4. 如何通过 JMX 监控 Hadoop 的垃圾回收(GC)性能? --- **引用来源** [^1]: Prometheus 数据导入配置方法。 [^2]: JMX Exporter 支持多数据格式转化的说明。 [^3]: Hadoop DataNode 环境变量配置示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今朝无言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值