SPWM波调制度原理

本文详细介绍了PWM(脉宽调制)的工作原理,通过占空比调节实现输出幅度控制。阐述了低通滤波后的直流分量与占空比的面积等效原理,并解释了SPWM(正弦脉宽调制)如何通过比较正弦信号与三角波来生成近似正弦输出。此外,还讨论了SPWM的调制度及其对输出波形的影响,包括最大和最小占空比的计算。最后,提到了正弦比较信号平移对减少失真的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PWM占空比

  先看PWM波是怎样通过调节占空比实现对输出幅度调控的,如图所示,PWM波占空比为
D = T p T D=\frac{T_p}{T} D=TTp
在这里插入图片描述

PWM波经过低通滤波后,高频分量被滤除,仅保留了直流分量,根据信号系统知识,直流分量为
a 0 = 1 T ∫ T s ( t ) d t a_0=\frac{1}{T}\int_{T}s(t)dt a0=T1Ts(t)dt
如果我们对上式进行适当变形:
a 0 T = ∫ T s ( t ) d t a_0T=\int_{T}s(t)dt a0T=Ts(t)dt
此即所谓的“面积等效原理”,对于PWM波而言,可知直流分量大小即信号幅度与占空比的乘积:
a 0 = A × D a_0=A\times D a0=A×D
因此通过调整PWM波的占空比即可获得所需幅度的直流输出。

  PWM波通常通过三角波比较产生:对于[0,1]间的三角波,与大小为D的信号相比较,产生的信号即为占空比为D的PWM波(根据三角形相似很容易得到),如下图所示, T p / T = D T_p/T=D Tp/T=D

在这里插入图片描述

SPWM调制

  对于SPWM波,由于载波频率远高于调制波频率,因此在短暂的一段时间内,可以视作被比较信号大小不变,如下图,根据前文所述,在这一短暂的时间内,其滤波输出信号的幅度将近似为 a 0 = A × D a_0=A\times D a0=A×D

在这里插入图片描述

随着比较信号的呈正弦形式逐渐变化,滤波输出也将呈现正弦形式。

  下面针对SPWM波的调制度进行介绍与分析,如下图所示,当正弦比较信号的幅值与三角信号幅值相同时,此时输出的SPWM波可以达到的最大占空比为100%,最小占空比为0%。将正弦信号幅度缩减到M倍,该放缩倍数M即称为调制度。图中所示的正弦波被平移成了两端对称的形式,此时SPWM波最大占空比为 0.5 + M / 2 0.5+M/2 0.5+M/2,最小占空比为 0.5 − M / 2 0.5-M/2 0.5M/2

在这里插入图片描述

  其实即使不进行平移,直接将正弦信号缩小到M倍,如下图,其SPWM波的最大占空比为M,最小占空比为0,滤波输出的峰峰值仍然为M,与上图所示仅仅相差一个直流偏置,对于正弦逆变,我们往往并不会关心其直流偏置有多少,若非要滤除直流,直接添加隔直电容即可。

在这里插入图片描述

  不过一般而言还是会将正弦比较信号平移到中心对称,因为死区的缘故,输出的两路PWM并非完全互补的,若比较信号的值接近0或1,会造成输出正弦波信号顶部的失真。

<think>嗯,用户想了解SPWM占空比的计算原理。首先,我需要回忆一下SPWM的基本概念。SPWM是正弦脉宽调制,常用于逆变器中,通过调整脉冲宽度来模拟正弦。占空比应该是指每个脉冲的导通时间与周期的比值,对吧? 根据引用[1],SPWM原理是通过比较正弦调制和三角载来生成PWM信号。占空比的计算应该和这两个的比较有关。当正弦的瞬时值高于三角时,输出高电平,反之低电平。这样,每个周期内高电平的时间比例就是占空比。 不过具体怎么计算呢?可能需要数学表达式。比如,正弦调制的表达式是$V_m \sin(\omega t)$,而三角载的峰值是$V_{carrier}$。当正弦的幅值比三角高时,占空比就会变化。比如,当正弦处于峰值时,占空比最大,接近100%;当正弦为零时,占空比可能是50%? 这时候应该用调制比的概念,调制比M是正弦幅值与三角幅值的比值,即$M = \frac{V_m}{V_{carrier}}$。占空比D(t)可能在每个时刻等于$(1 + M \sin(\omega t))/2$。例如,当M=1时,占空比在0到1之间变化,这样就能生成正弦调制的脉冲。 不过用户可能想知道具体的计算步骤,比如如何从调制和载的比较得到占空比。可能需要画图或者用积分的方式。例如,在每个载周期内,计算正弦与三角的交点,从而确定导通时间。这个过程可能比较复杂,涉及到三角函数的求解,或者采用近似的数值方法。 另外,引用[2]提到STM32的PWM输出配置,可能涉及定时器的设置,比如自动重装载值ARR和捕获比较寄存器CCR。占空比D = CCR / ARR。在SPWM中,CCR需要根据正弦的瞬时值动态调整,所以可能需要预先生成一个正弦表,然后在每个周期更新CCR的值。 用户可能还关心实际应用中的问题,比如如何选择载频率,调制比的范围,以及如何避免过调制。例如,当M>1时,会出现过调制,导致形失真。所以通常M不超过1。 总结一下,我需要分步骤解释SPWM占空比的计算原理,包括调制和载的比较,调制比的影响,占空比的数学表达式,以及实际实现中的定时器配置和正弦表生成。同时,结合引用中的内容,确保信息准确。</think>### SPWM占空比计算原理详解 SPWM(正弦脉宽调制)通过调整脉冲宽度来模拟正弦形,其占空比计算依赖**调制与载的实时比较**。核心原理可分解为以下三个步骤: **1. 形叠加比较** - **正弦调制**:$V_{mod}(t) = M \cdot V_{dc} \cdot \sin(2\pi f_{mod} t)$ ($M$为调制比,$V_{dc}$为直流母线电压) - **三角载**:频率$f_{carrier}$远高于$f_{mod}$,幅值范围$[-V_{carrier}, V_{carrier}]$ 当$V_{mod}(t) > V_{carrier}(t)$时输出高电平,否则低电平[^1] **2. 占空比数学推导** 每个载周期内的占空比计算公式为: $$D(t) = \frac{1}{2} \left[1 + M \cdot \sin(2\pi f_{mod} t)\right]$$ 其中$M$的取值需满足$0 < M \leq 1$,当$M>1$时会产生过调制失真 **3. 工程实现方法** 以STM32定时器为例(引用[2]): - 设定ARR(自动重装载值)决定载频率:$f_{carrier} = \frac{f_{TIM}}{(ARR+1)}$ - 动态更新CCR(捕获比较寄存器)实现占空比调节: $CCR = \frac{ARR+1}{2} \left[1 + M \cdot \sin(2\pi f_{mod} t)\right]$ #### 参数设计示例 ```c // 生成正弦表代码片段 #define SINE_TABLE_SIZE 256 uint16_t sine_table[SINE_TABLE_SIZE]; for(int i=0; i<SINE_TABLE_SIZE; i++){ sine_table[i] = (uint16_t)((ARR_MAX/2) * (1 + M * sin(2*M_PI*i/SINE_TABLE_SIZE))); } ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今朝无言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值