大模型本地化部署(Ollama + Open-WebUI)

环境准备

下载Ollama

  下载地址:Ollama网址

  安装完成后,命令行里执行命令

ollama -v

查看是否安装成功。安装成功会显示版本信息

在这里插入图片描述

ollama 的命令可通过 ollama -h 查看。

模型下载

  可以在 Ollama 网站的 Models 里查看公开的大模型(网址),也可以从大模型镜像源站 HF-Mirror 下载。

  以 Ollama 网站为例,点进一个大模型(如最近大火的 DeepSeek R1)

在这里插入图片描述

如图右下角的 ollama run deepseek-r1 就是下载命令,在第一次执行该命令时,ollama 将从网站下载大模型,在下载完成后,再执行这一命令就会加载模型,并进入交互模式:

在这里插入图片描述

:大部分模型都是有内容审查的,这很多时候限制了我们的使用灵活性,可以寻找带有 abliterated 后缀的模型,这些模型被注释了审查代码。(不过本人尝试发现 abliterated 版本的实际上仍存在审查机制,会拒绝回答某些问题)

下载Open-WebUI

  网上其他教程安装 Open-WebUI 一般都是在虚拟机 Docker 下安装的,这在 Windows 系统里很不方便。这里提供另外一种方法:首先安装 Python 3.11,然后在命令行里执行

pip install open-webui

即可完成 open-webui 的安装。

本地化部署的Web图形化界面

  首先,需要开启 Ollama 服务,运行一个大模型,在命令行里执行

ollama run 大模型名

其中模型名可以通过 ollama list 查看。启用 ollama 服务后,可以使用

ollama ps

命令查看当前运行的模型进程。

  随后再打开一个命令行,执行如下命令启用 open-webui 服务

open-webui serve

启动后可以在浏览器里输入以下地址,打开 Web 图形化界面:

localhost:8080
(本机IP):8080

其中第二个地址可以在局域网内的其他设备访问

  Open-WebUI 的界面如下

在这里插入图片描述

本地化部署完成!

本地模型联网查询

  未联网的情况下,很多问题大模型无法解决,回答也比较蠢(还会胡说),因此需要增加联网查询功能。

安装 Docker

  安装 Docker Desktop 即可(网址 Docker)。安装后用以下命令查询是否安装完成:

docker -v

安装 SearXNG

  执行如下命令拉取 SearXNG (一个可以本地部署的轻量化搜索引擎)

docker pull searxng/searxng

不过这个命令由于网站无法连接,下载往往失败,可以使用镜像源:

docker pull docker.m.daocloud.io/searxng/searxng

安装完成后即可在 Docker Desktop 里查看到 SearXNG Image:

在这里插入图片描述

  执行如下命令(最后面一串是 Image Name,注意要和你的 SearXNG 名字相同),将服务开在了端口 12345

docker run -d -p 12345:8080 docker.m.daocloud.io/searxng/searxng

随后可以在 Docker Desktop 的 Container/App 界面查看到运行的 SearXNG,显示运行在 12345 号端口。在命令行里使用

docker ps

命令也可以查看到运行中的 docker 镜像进程。

  在浏览器访问 localhost:12345,可以看到 SearXNG 服务已开启。

在这里插入图片描述

用默认配置的 SearXNG 很可能搜索不到东西,可以在配置里修改搜索引擎,改成大陆可以访问的那几个。

本地模型联网查询

  在 open-webui 界面下,用户->管理员面板->设置 里面,配置搜索引擎如下,并保存设置

在这里插入图片描述

此时询问问题,联网查询可能会报 403 错误,需要修改一个配置文件。执行

docker ps

查看 searxng 服务的 CONTAINER ID 号,随后执行以下命令(命令中的 <CONTAINER_ID> 替换为你 SearXNG 的 CONTAINER ID)

docker exec -it <CONTAINER_ID> sh

进入到镜像目录,随后进入 /etc/searxng/ 目录,使用 vi 修改 settings.yml 文件,在 formats 下面增加一行(- json)

在这里插入图片描述

修改文件后保存,然后 restart 容器。


  修改 settings.yml 后,open-webui 联网查询不再报 403 错误,但可能报 Expecting value: line 1 column 1 (char 0) 错误(这是因为返回值格式不满足 json 格式导致的解析错误)或 RemoteDisconnected('Remote end closed connection without response') 错误,笔者目前还没有找到好的解决方法,日后若解决了再补上这里。

(U•ェ•*U )

### 部署DeepSeek本地模型的教程 #### 使用Docker、OllamaOpen-WebUI在Linux上的部署流程 为了成功部署DeepSeek本地模型,需先安装并配置好Docker环境。对于Linux系统而言,推荐按照官方文档中的指导完成安装过程[^1]。 一旦Docker准备就绪,下一步就是拉取所需的镜像文件。这里涉及到两个主要组件:一个是用于处理数据流的应用程序`docker.io/sladesoftware/log-application:latest`[^2];另一个则是特定版本的日志收集工具`docker.io/elastic/filebeat:7.8.0`。不过针对DeepSeek项目本身,则需要找到对应的预构建镜像或是自行创建适合该模型运行的基础镜像。 关于Ollama的支持,在此假设其作为服务端的一部分被集成到了最终使用的容器化应用里。而Open-WebUI作为一个图形界面前端框架,可以方便开发者调试以及用户交互操作。通常情况下,这类web应用程序也会被打包成独立的Docker镜像来简化分发与部署工作。 下面是一个简单的Python脚本例子展示如何通过命令行调用API接口启动相关服务: ```python import subprocess def start_services(): try: # 启动日志收集器FileBeat filebeat_command = "docker run -d docker.io/elastic/filebeat:7.8.0" process_filebeat = subprocess.Popen(filebeat_command.split(), stdout=subprocess.PIPE) # 启动Log Application log_app_command = "docker run -d docker.io/sladesoftware/log-application:latest" process_logapp = subprocess.Popen(log_app_command.split(), stdout=subprocess.PIPE) output, error = process_filebeat.communicate() if error is None: print("Services started successfully.") else: print(f"Error occurred while starting services: {error}") except Exception as e: print(e) if __name__ == "__main__": start_services() ``` 值得注意的是,实际环境中可能还需要考虑网络设置、存储卷挂载等问题以确保各个微服务之间能够正常通信协作。此外,由于具体实现细节会依赖于所选的技术栈及业务需求,因此建议参考更多针对性强的学习资源如《Docker入门到实践》一书获取深入理解。 最后提醒一点,当涉及敏感信息传输时务必遵循安全最佳实践原则保护隐私不受侵犯。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今朝无言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值