一、绪论(发展史、简单概念等)
(一)简单概念
- 样本(sample):所研究对象的一个个体。
- 样本集(sample set):若干样本的集合。
- 类(class):在所有样本上定义一个子集,我们关心的某种性质在该子集上是不可区分的,则该子集上的所有样本为同一类样本。
- 特征(feature)或称为属性:表征样本的观测,常用数值表示量化的特征。
- 特征向量(feature vector):多个特征组成特征向量。
(二)发展史
- 1929年,阅读机被发明出来,能够阅读0-9的数字。(这么早就可以进行数字识别了,想想就感觉很厉害。)
- 二十世纪三十年代,Fisher提出统计分类理论,奠定了统计模式识别的基础。(后面学到的Fisher准则应该也是他提出的)
- 二十世纪五十年代,Noam Chemsky 提出形式语言理论;傅京荪提出句法结构模式识别。
- 二十世纪六十年代,L.A.Zadeh 提出模糊集理论,模糊模式识别方法得以发展和应用。
- 二十世纪八十年代,以Hopfield网络、BP网络为代表的神经网络模型导致了人工神经网络的复活,并且在模式识别领域得到了比较广泛的应用。(现在神经网络应用非常广泛)
- 二十世纪九十年代,小样本学习理论、支