一、绪论(发展史、简单概念等)

这篇博客介绍了模式识别的发展史,从1929年的阅读机到现代的深度学习。它阐述了简单概念,如样本、特征向量,以及主要方法,包括基于知识和数据的方法,如专家系统、人工神经网络和支持向量机。
摘要由CSDN通过智能技术生成

一、绪论(发展史、简单概念等)

(一)简单概念

  • 样本(sample):所研究对象的一个个体。
  • 样本集(sample set):若干样本的集合。
  • 类(class):在所有样本上定义一个子集,我们关心的某种性质在该子集上是不可区分的,则该子集上的所有样本为同一类样本。
  • 特征(feature)或称为属性:表征样本的观测,常用数值表示量化的特征。
  • 特征向量(feature vector):多个特征组成特征向量。

(二)发展史

  • 1929年,阅读机被发明出来,能够阅读0-9的数字。(这么早就可以进行数字识别了,想想就感觉很厉害。)
  • 二十世纪三十年代,Fisher提出统计分类理论,奠定了统计模式识别的基础。(后面学到的Fisher准则应该也是他提出的)
  • 二十世纪五十年代,Noam Chemsky 提出形式语言理论;傅京荪提出句法结构模式识别。
  • 二十世纪六十年代,L.A.Zadeh 提出模糊集理论,模糊模式识别方法得以发展和应用。
  • 二十世纪八十年代,以Hopfield网络、BP网络为代表的神经网络模型导致了人工神经网络的复活,并且在模式识别领域得到了比较广泛的应用。(现在神经网络应用非常广泛)
  • 二十世纪九十年代,小样本学习理论、支
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值