1.1 第一节 统计指数的概念
1.1.1 统计指数的定义
指数:综合反映由多种因素组成的经济现象在不同时间或空间条件下平均变动的==相对数==
相对数是两个有联系的指标的比值,他可以从数量上反映两个相互联系的现象之间的对比关系
注:同一总体的部分指标与总量指标之比是比例,同一总体的部分指标与另一部分指标之比是比率,这两者都不是指数。
1.1.2 统计指数的性质
- 相对性
指数是总体各变量在不同场合下对比形成的相对数,他可以度量一个变量在不同时间或空间的相对变化,也可用于反映一组变量的综合变动。 - 综合性
综合说明指数是一种特殊的相对数,它是由一组变量或项目综合对比形成的。 - 平均性
指数==所反映的综合变动是多种事物的平均变动==,是各个个体数量变化的代表值。
1.1.3 统计指数的作用(背前两个)
- 反映复杂社会经济现象总体的综合变动和变动程度,这是总指数最基本的作用。
- 分析现象总体变动中各个因素的影响力和影响方向。
- 对社会经济现象进行综合评价和测定。
- 分析研究社会经济现象在长时间内的发展变化趋势。
- 在金融产品创新中发挥重大作用。
1.1.4 统计指数的分类
1.2 第二节 统计指数编制的基本方法
统计研究的对象是总体,而个体指数编制比较简单可视为总体指数的特例,因此,下面介绍的统计指数编制方法都是针对总指数而言的。
公式符号约定:
-
K ‾ \overline{K} K表示总指数,K表示个体指数,p表示价格,q表示数量;
-
下标为0表示基期的取值,下标为1表示报告期的取值,下标s表示特定期的取值
注:总指数编制的基本方法又可分为两类
- 简单指数法
- 加权指数法
- 加权综合指数法
- 加权平均指数法
具体的统计指数编制方法分类如下图所示
知识点回顾:
平均数分为简单平均数与加权平均数
平均数间的大小关系:调和平均数 ≤ \le ≤几何平均数 ≤ \le ≤算数平均数
- 简单平均数包括
1 简单算数平均数: X ‾ A = ∑ X i n \overline{X}_A=\frac{\sum X_i}{n} XA=n∑Xi
2 简单几何平均数: X ‾ G = ∏ X i n \overline{X}_G=\sqrt[n]{\prod X_i} XG=n∏Xi
3 简单调和平均数: X ‾ H = n ∑ 1 X i \overline{X}_H=\frac{n}{\sum \frac{1}{X_i}} XH=∑Xi1n - 加权平均数包括
1 加权算数平均数: X ‾ A = ∑ X i f i ∑ f i \overline{X}_A=\frac{\sum X_if_i}{\sum f_i} XA=∑fi∑Xifi
2 加权几何平均数: X ‾ G = ∏ X i f i ∑ f i \overline{X}_G=\sqrt[\sum f_i]{\prod X_i^{f_i}} XG=∑fi∏Xifi
3 加权调和平均数: X ‾ H = ∑ f i ∑ f i X i \overline{X}_H=\frac{\sum f_i}{\sum \frac{f_i}{X_i}} XH=∑Xifi∑fi
1.2.1 简单指数法
定义:简单指数法是指不用权数编制总指数的方法
实质:排除所反映对象各自不同重要性和影响力(即权数),而单独研究某一特性变化的方法。
所研究的特性称为指数化因素
主要表现形式:简单综合法,简单算数平均法,简单几何平均法,简单调和平均法,简单中位数法,简单众数法。
下面我们通过举例说明简单指数法的这六种表现形式:
设某商店3种商品报告期和基期销售价格如下表所示
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JQJ82Cbr-1615650405719)(D:\python学习\学习笔记(csdn博客)]\第一章 绪论.assets\20210305151126951.png)
(一) 简单综合指数
该方法是将指数化因素报告期取值的总和,与基期取值总和进行比较
K ‾ = ∑ P 1 ∑ P 0 = 4 + 3 + 12 4.2 + 3.6 + 17.4 = 1.092 \overline{K}=\frac{\sum P_1}{\sum P_0}=\frac{4+3+12}{4.2+3.6+17.4}=1.092 K=∑P0∑P1=4.2+3.6+17.44+3+12=1.092
缺陷:
-
计算结果受计量单位影响
-
存在隐伏加权,结果接受价值高的商品影响
(二)简单算数平均法
该方法是对指数化因素的个体指数之和计算简单算数平均数
K ‾ = 1 N ∑ P 1 P 0 = 1 3 ( 4 4.2 + 3 3.6 + 12 9.6 ) = 1.0119 \overline{K}=\frac{1}{N}\sum \frac{P_1}{P_0}=\frac{1}{3}(\frac{4}{4.2}+\frac{3}{3.6}+\frac{12}{9.6})=1.0119 K=N1∑P0P1=31(4.24+3.63+9.612)=1.0119
缺陷:
- 将各个体指数权数视为相等,与商品重要性和价格变动的实际影响不符。
(三)简单调和平均法
该方法是对**指数化因素的个体指数计算简单调和平均数,即各个个体指数倒数的算术平均数的倒数。**
K ‾ = 1 1 N ∑ 1 P 1 P 0 = N ∑ P 0 P 1 = 3 4.2 4 + 3.6 3 + 9.6 12 = 0.9836 \overline{K}=\frac{1}{\frac{1}{N}\sum\frac{1}{\frac{P_1}{P_0}}}=\frac{N}{\sum\frac{P_0}{P_1}}=\frac{3}{\frac{4.2}{4}+\frac{3.6}{3}+\frac{9.6}{12}}=0.9836 K=N1∑P0P111=∑P1P0N=44.2