ConcurrentHashMap底层实现原理及扩容机制

目录

前言

ConcurrentHashMap

JDK1.7的实现

初始化

put操作

get操作

size操作

JDK1.8的实现

Node

TreeNode

put操作

get函数

replaceNode函数

扩容机制

扩容时读写操作的处理

总结


前言

我们都知道HashMap在多线程情况下,在put的时候,插入的元素超过了容量(由负载因子决定)的范围就会触发扩容操作,就是rehash,这个会重新将原数组的内容重新hash到新的扩容数组中,在多线程的环境下,存在同时其他的元素也在进行put操作,如果hash值相同,可能出现同时在同一数组下用链表表示,造成闭环,导致在get时会出现死循环,所以HashMap是线程不安全的。

我们来了解另一个键值存储集合HashTable,它是线程安全的,它在所有涉及到多线程操作的都加上了synchronized关键字来锁住整个table,这就意味着所有的线程都在竞争一把锁,在多线程的环境下,它是安全的,但是无疑是效率低下的。

其实HashTable有很多的优化空间,锁住整个table这么粗暴的方法可以变相的柔和点,比如在多线程的环境下,对不同的数据集进行操作时其实根本就不需要去竞争一个锁,因为他们不同hash值,不会因为rehash造成线程不安全,所以互不影响,这就是锁分离技术,将锁的粒度降低,利用多个锁来控制多个小的table

ConcurrentHashMap

JDK1.7的实现

在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成,如下图所示:

Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁,也就是上面的提到的锁分离技术,而每一个Segment元素存储的是HashEntry数组+链表,这个和HashMap的数据存储结构一样

初始化

ConcurrentHashMap的初始化是会通过位与运算来初始化Segment的大小,用size来表示,如下所示

int size =1;
while(size < concurrencyLevel) {
    ++a;
    size <<=1;
}      

如上所示,因为size用位于运算来计算( size <<=1 ),所以Segment的大小取值都是以2的N次方,无关concurrencyLevel的取值,当然concurrencyLevel最大只能用16位的二进制来表示,即65536,换句话说,Segment的大小最多65536个,没有指定concurrencyLevel元素初始化,Segment的大小size默认为16

每一个Segment元素下的HashEntry的初始化也是按照位于运算来计算,用cap来表示,如下所示

int cap =1;
while(cap < c)
    cap <<=1;

如上所示,HashEntry大小的计算也是2的N次方(cap <<=1), cap的初始值为1,所以HashEntry最小的容量为2

put操作

对于ConcurrentHashMap的数据插入,这里要进行两次Hash去定位数据的存储位置

static class  Segment<K,V> extends  ReentrantLock implements  Serializable {
}

从上Segment的继承体系可以看出,Segment实现了ReentrantLock,也就带有锁的功能,当执行put操作时,会进行第一次key的hash来定位Segment的位置,如果该Segment还没有初始化,即通过CAS操作进行赋值,然后进行第二次hash操作,找到相应的HashEntry的位置,这里会利用继承过来的锁的特性,在将数据插入指定的HashEntry位置时(链表的尾端),会通过继承ReentrantLock的tryLock()方法尝试去获取锁,如果获取成功就直接插入相应的位置,如果已经有线程获取该Segment的锁,那当前线程会以自旋的方式去继续的调用tryLock()方法去获取锁,超过指定次数就挂起,等待唤醒

get操作

ConcurrentHashMap的get操作跟HashMap类似,只是ConcurrentHashMap第一次需要经过一次hash定位到Segment的位置,然后再hash定位到指定的HashEntry,遍历该HashEntry下的链表进行对比,成功就返回,不成功就返回null

size操作

计算ConcurrentHashMap的元素大小是一个有趣的问题,因为他是并发操作的,就是在你计算size的时候,他还在并发的插入数据,可能会导致你计算出来的size和你实际的size有相差(在你return size的时候,插入了多个数据),要解决这个问题,JDK1.7版本用两种方案

  1. 第一种方案他会使用不加锁的模式去尝试多次计算ConcurrentHashMap的size,最多三次,比较前后两次计算的结果,结果一致就认为当前没有元素加入,计算的结果是准确的
  2. 第二种方案是如果第一种方案不符合,他就会给每个Segment加上锁,然后计算ConcurrentHashMap的size返回

JDK1.8的实现

JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本

说明:ConcurrentHashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树是为了提高查找效率。

在深入JDK1.8的put和get实现之前要知道一些常量设计和数据结构,这些是构成ConcurrentHashMap实现结构的基础,下面看一下基本属性:

  // node数组最大容量:2^30=1073741824  

  private  static  final  int  MAXIMUM_CAPACITY =  1  <<  30    ;  

  // 默认初始值,必须是2的幂数  

  private  static  final  int  DEFAULT_CAPACITY =  16    ;  

  //数组可能最大值,需要与toArray()相关方法关联  

  static  final  int  MAX_ARRAY_SIZE = Integer.MAX_VALUE -  8    ;  

  //并发级别,遗留下来的,为兼容以前的版本  

  private  static  final  int  DEFAULT_CONCURRENCY_LEVEL =  16    ;  

  // 负载因子  

  private  static  final  float  LOAD_FACTOR =  0    .75f;  

  // 链表转红黑树阀值,> 8 链表转换为红黑树  

  static  final  int  TREEIFY_THRESHOLD =  8    ;  

  //树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))  

  static  final  int  UNTREEIFY_THRESHOLD =  6    ;  

  static  final  int  MIN_TREEIFY_CAPACITY =  64    ;  

  private  static  final  int  MIN_TRANSFER_STRIDE =  16    ;  

  private  static  int  RESIZE_STAMP_BITS =  16    ;  

  // 2^15-1,help resize的最大线程数  

  private  static  final  int  MAX_RESIZERS = (    1  << (    32  - RESIZE_STAMP_BITS)) -  1    ;  

  // 32-16=16,sizeCtl中记录size大小的偏移量  

  private  static  final  int  RESIZE_STAMP_SHIFT =  32  - RESIZE_STAMP_BITS;  

  // forwarding nodes的hash值  

  static  final  int  MOVED     = -    1    ;  

  // 树根节点的hash值  

  static  final  int  TREEBIN   = -    2    ;  

  // ReservationNode的hash值  

  static  final  int  RESERVED  = -    3    ;  

  // 可用处理器数量  

  static  final  int  NCPU = Runtime.getRuntime().availableProcessors();  

  //存放node的数组  

  transient  volatile  Node<K,V>[] table;  

  /*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义  

  *当为负数时:-    1    代表正在初始化,-N代表有N-    1    个线程正在 进行扩容  

  *当为    0    时:代表当时的table还没有被初始化  

  *当为正数时:表示初始化或者下一次进行扩容的大小  
*/

  private  transient  volatile  int  sizeCtl;  

基本属性定义了ConcurrentHashMap的一些边界以及操作时的一些控制,下面看一些内部的一些结构组成,这些是整个ConcurrentHashMap整个数据结构的核心

Node

Node是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据,源代码如下

  static  class  Node<K,V>  implements  Map.Entry<K,V> {  

  //链表的数据结构  

  final  int  hash;  

  final  K key;  

  //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序  

  volatile  V val;  

  volatile  Node<K,V> next;  

  Node(    int  hash, K key, V val, Node<K,V> next) {  

      this.hash = hash;  

      this.key = key;  

      this.val = val;  

      this.next = next;  

  }  

  public  final  K getKey()       {  return  key; }  

  public  final  V getValue()     {  return  val; }  

  public  final  int  hashCode()   {  return  key.hashCode() ^ val.hashCode(); }  

  public  final  String toString(){  return  key +  "="  + val; }  

  //不允许更新value   

  public  final  V setValue(V value) {  

      throw  new  UnsupportedOperationException();  

  }  

  public  final  boolean  equals(Object o) {  

      Object k, v, u; Map.Entry<?,?> e;  

      return  ((o  instanceof  Map.Entry) &&  

          (k = (e = (Map.Entry<?,?>)o).getKey()) !=  null  &&  

          (v = e.getValue()) !=  null  &&  

          (k == key || k.equals(key)) &&  

          (v == (u = val) || v.equals(u)));  

  }  

  //用于map中的get()方法,子类重写  

  Node<K,V> find(    int  h, Object k) {  

      Node<K,V> e =  this    ;  

      if  (k !=  null    ) {  

          do  {  

              K ek;  

              if  (e.hash == h &&  

                  ((ek = e.key) == k || (ek !=  null  && k.equals(ek))))  

              return  e;  

          }  while  ((e = e.next) !=  null    );  

  }  

      return  null;  

      }  

  }  

Node数据结构很简单,从上可知,就是一个链表,但是只允许对数据进行查找,不允许进行修改

TreeNode

TreeNode继承与Node,但是数据结构换成了二叉树结构,它是红黑树的数据的存储结构,用于红黑树中存储数据,当链表的节点数大于8时会转换成红黑树的结构,他就是通过TreeNode作为存储结构代替Node来转换成黑红树源代码如下

  static  final  class  TreeNode<K,V>  extends  Node<K,V> {  

  //树形结构的属性定义  

  TreeNode<K,V> parent;  // red-black tree links  

  TreeNode<K,V> left;  

  TreeNode<K,V> right;  

  TreeNode<K,V> prev;  // needed to unlink next upon deletion  

  boolean  red;  //标志红黑树的红节点  

  TreeNode(    int  hash, K key, V val, Node<K,V> next,  

  TreeNode<K,V> parent) {  

  super    (hash, key, val, next);  

  this    .parent = parent;  

  }  

  Node<K,V> find(    int  h, Object k) {  

  return  findTreeNode(h, k,  null    );  

  }  

  //根据key查找 从根节点开始找出相应的TreeNode,  

  final  TreeNode<K,V> findTreeNode(    int  h, Object k, Class<?> kc) {  

  if  (k !=  null    ) {  

  TreeNode<K,V> p =  this    ;  

  do      {  

  int  ph, dir; K pk; TreeNode<K,V> q;  

  TreeNode<K,V> pl = p.left, pr = p.right;  

  if  ((ph = p.hash) > h)  

  p = pl;  

  else  if  (ph < h)  

  p = pr;  

  else  if  ((pk = p.key) == k || (pk !=  null  && k.equals(pk)))  

  return  p;  

  else  if  (pl ==  null    )  

  p = pr;  

  else  if  (pr ==  null    )  

  p = pl;  

  else  if  ((kc !=  null  ||  

  (kc = comparableClassFor(k)) !=  null    ) &&  

  (dir = compareComparables(kc, k, pk)) !=  0    )  

  p = (dir <  0    ) ? pl : pr;  

  else  if  ((q = pr.findTreeNode(h, k, kc)) !=  null    )  

  return  q;  

  else  

  p = pl;  

  }  while  (p !=  null    );  

  }  

  return  null    ;  

  }  

  }  

我们先通过 new ConcurrentHashMap() 来进行初始化

  public  ConcurrentHashMap() {  

  }  

由上你会发现ConcurrentHashMap的初始化其实是一个空实现,并没有做任何事,这里后面会讲到,这也是和其他的集合类有区别的地方,初始化操作并不是在构造函数实现的,而是在put操作中实现,当然ConcurrentHashMap还提供了其他的构造函数,有指定容量大小或者指定负载因子,跟HashMap一样,这里就不做介绍了

put操作

在上面的例子中我们新增个人信息会调用put方法,我们来看下:

final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException(); // 键或值为空,抛出异常
        // 键的hash值经过计算获得hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) { // 无限循环
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0) // 表为空或者表的长度为0
                // 初始化表
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 表不为空并且表的长度大于0,并且该桶不为空
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null))) // 比较并且交换值,如tab的第i项为空则用新生成的node替换
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED) // 该结点的hash值为MOVED
                // 进行结点的转移(在扩容的过程中)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) { // 加锁同步
                    if (tabAt(tab, i) == f) { // 找到table表下标为i的节点
                        if (fh >= 0) { // 该table表中该结点的hash值大于0
                            // binCount赋值为1
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) { // 无限循环
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) { // 结点的hash值相等并且key也相等
                                    // 保存该结点的val值
                                    oldVal = e.val;
                                    if (!onlyIfAbsent) // 进行判断
                                        // 将指定的value保存至结点,即进行了结点值的更新
                                        e.val = value;
                                    break;
                                }
                                // 保存当前结点
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) { // 当前结点的下一个结点为空,即为最后一个结点
                                    // 新生一个结点并且赋值给next域
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    // 退出循环
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) { // 结点为红黑树结点类型
                            Node<K,V> p;
                            // binCount赋值为2
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) { // 将hash、key、value放入红黑树
                                // 保存结点的val
                                oldVal = p.val;
                                if (!onlyIfAbsent) // 判断
                                    // 赋值结点value值
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) { // binCount不为0
                    if (binCount >= TREEIFY_THRESHOLD) // 如果binCount大于等于转化为红黑树的阈值
                        // 进行转化
                        treeifyBin(tab, i);
                    if (oldVal != null) // 旧值不为空
                        // 返回旧值
                        return oldVal;
                    break;
                }
            }
        }
        // 增加binCount的数量
        addCount(1L, binCount);
        return null;
    }

说明:put函数底层调用了putVal进行数据的插入,对于putVal函数的流程大体如下。

  ① 判断存储的key、value是否为空,若为空,则抛出异常,否则,进入步骤②

  ② 计算key的hash值,随后进入无限循环,该无限循环可以确保成功插入数据,若table表为空或者长度为0,则初始化table表,否则,进入步骤③

  ③ 根据key的hash值取出table表中的结点元素,若取出的结点为空(该桶为空),则使用CAS将key、value、hash值生成的结点放入桶中。否则,进入步骤④

  ④ 若该结点的的hash值为MOVED,则对该桶中的结点进行转移,否则,进入步骤⑤

  ⑤ 对桶中的第一个结点(即table表中的结点)进行加锁,对该桶进行遍历,桶中的结点的hash值与key值与给定的hash值和key值相等,则根据标识选择是否进行更新操作(用给定的value值

替换该结点的value值),若遍历完桶仍没有找到hash值与key值和指定的hash值与key值相等的结点,则直接新生一个结点并赋值为之前最后一个结点的下一个结点。进入步骤⑥

  ⑥ 若binCount值达到红黑树转化的阈值,则将桶中的结构转化为红黑树存储,最后,增加binCount的值。

  在putVal函数中会涉及到如下几个函数:initTable、tabAt、casTabAt、helpTransfer、putTreeVal、treeifyBin、addCount函数。下面对其中涉及到的函数进行分析。

  其中 initTable函数源码如下:

private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) { // 无限循环
            if ((sc = sizeCtl) < 0) // sizeCtl小于0,则进行线程让步等待
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 比较sizeCtl的值与sc是否相等,相等则用-1替换
                try {
                    if ((tab = table) == null || tab.length == 0) { // table表为空或者大小为0
                        // sc的值是否大于0,若是,则n为sc,否则,n为默认初始容量
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        // 新生结点数组
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        // 赋值给table
                        table = tab = nt;
                        // sc为n * 3/4
                        sc = n - (n >>> 2);
                    }
                } finally {
                    // 设置sizeCtl的值
                    sizeCtl = sc;
                }
                break;
            }
        }
        // 返回table表
        return tab;
    }

说明:对于table的大小,会根据sizeCtl的值进行设置,如果没有设置szieCtl的值,那么默认生成的table大小为16,否则,会根据sizeCtl的大小设置table大小。

  tabAt函数源码如下  

  static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

  说明:此函数返回table数组中下标为i的结点,可以看到是通过Unsafe对象通过反射获取的,getObjectVolatile的第二项参数为下标为i的偏移地址。

  casTabAt函数源码如下  

  static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                        Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }

  说明:此函数用于比较table数组下标为i的结点是否为c,若为c,则用v交换操作。否则,不进行交换操作。

  helpTransfer函数源码如下:

final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { // table表不为空并且结点类型使ForwardingNode类型,并且结点的nextTable不为空
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) { // 条件判断
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0) // 
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { // 比较并交换
                    // 将table的结点转移到nextTab中
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

说明:此函数用于在扩容时将table表中的结点转移到nextTable中。

  putTreeVal函数源码如下:

 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if (p == null) {
                    first = root = new TreeNode<K,V>(h, k, v, null, null);
                    break;
                }
                else if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.findTreeNode(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.findTreeNode(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    TreeNode<K,V> x, f = first;
                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
                    if (f != null)
                        f.prev = x;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    if (!xp.red)
                        x.red = true;
                    else {
                        lockRoot();
                        try {
                            root = balanceInsertion(root, x);
                        } finally {
                            unlockRoot();
                        }
                    }
                    break;
                }
            }
            assert checkInvariants(root);
            return null;
        }

说明:此函数用于将指定的hash、key、value值添加到红黑树中,若已经添加了,则返回null,否则返回该结点。

  treeifyBin函数源码如下:

private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) { // 表不为空
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) // table表的长度小于最小的长度
                // 进行扩容,调整某个桶中结点数量过多的问题(由于某个桶中结点数量超出了阈值,则触发treeifyBin)
                tryPresize(n << 1);
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { // 桶中存在结点并且结点的hash值大于等于0
                synchronized (b) { // 对桶中第一个结点进行加锁
                    if (tabAt(tab, index) == b) { // 第一个结点没有变化
                        TreeNode<K,V> hd = null, tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) { // 遍历桶中所有结点
                            // 新生一个TreeNode结点
                            TreeNode<K,V> p =
                                new TreeNode<K,V>(e.hash, e.key, e.val,
                                                  null, null);
                            if ((p.prev = tl) == null) // 该结点前驱为空
                                // 设置p为头结点
                                hd = p;
                            else
                                // 尾节点的next域赋值为p
                                tl.next = p;
                            // 尾节点赋值为p
                            tl = p;
                        }
                        // 设置table表中下标为index的值为hd
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }

说明:此函数用于将桶中的数据结构转化为红黑树,其中,值得注意的是,当table的长度未达到阈值时,会进行一次扩容操作,该操作会使得触发treeifyBin操作的某个桶中的所有元素进行一

次重新分配,这样可以避免某个桶中的结点数量太大。

  addCount函数源码如下:

private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { // counterCells不为空或者比较交换失败
            CounterCell a; long v; int m;
            // 无竞争标识
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { // 
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

  说明:此函数主要完成binCount的值加1的操作。

整个put的过程很清晰,对当前的table进行无条件自循环直到put成功,可以分成以下六步流程来概述

  1. 如果没有初始化就先调用initTable()方法来进行初始化过程
  2. 如果没有hash冲突就直接CAS插入
  3. 如果还在进行扩容操作就先进行扩容
  4. 如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,
  5. 最后一个如果Hash冲突时会形成Node链表,在链表长度超过8,Node数组超过64时会将链表结构转换为红黑树的结构,break再一次进入循环
  6. 如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容

get函数

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // 计算key的hash值
        int h = spread(key.hashCode()); 
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) { // 表不为空并且表的长度大于0并且key所在的桶不为空
            if ((eh = e.hash) == h) { // 表中的元素的hash值与key的hash值相等
                if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 键相等
                    // 返回值
                    return e.val;
            }
            else if (eh < 0) // 结点hash值小于0
                // 在桶(链表/红黑树)中查找
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) { // 对于结点hash值大于0的情况
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

说明:get函数根据key的hash值来计算在哪个桶中,再遍历桶,查找元素,若找到则返回该结点,否则,返回null。

ConcurrentHashMap的get操作的流程很简单,也很清晰,可以分为三个步骤来描述

  1. 计算hash值,定位到该table索引位置,如果是首节点符合就返回
  2. 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
  3. 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null

replaceNode函数

final V replaceNode(Object key, V value, Object cv) {
        // 计算key的hash值
        int hash = spread(key.hashCode());
        for (Node<K,V>[] tab = table;;) { // 无限循环
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null) // table表为空或者表长度为0或者key所对应的桶为空
                // 跳出循环
                break;
            else if ((fh = f.hash) == MOVED) // 桶中第一个结点的hash值为MOVED
                // 转移
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                boolean validated = false;
                synchronized (f) { // 加锁同步
                    if (tabAt(tab, i) == f) { // 桶中的第一个结点没有发生变化
                        if (fh >= 0) { // 结点hash值大于0
                            validated = true;
                            for (Node<K,V> e = f, pred = null;;) { // 无限循环
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) { // 结点的hash值与指定的hash值相等,并且key也相等
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) { // cv为空或者与结点value相等或者不为空并且相等
                                        // 保存该结点的val值
                                        oldVal = ev;
                                        if (value != null) // value为null
                                            // 设置结点value值
                                            e.val = value;
                                        else if (pred != null) // 前驱不为空
                                            // 前驱的后继为e的后继,即删除了e结点
                                            pred.next = e.next;
                                        else
                                            // 设置table表中下标为index的值为e.next
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) { // 为红黑树结点类型
                            validated = true;
                            // 类型转化
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) { // 根节点不为空并且存在与指定hash和key相等的结点
                                // 保存p结点的value
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) { // cv为空或者与结点value相等或者不为空并且相等
                                    oldVal = pv;
                                    if (value != null) 
                                        p.val = value;
                                    else if (t.removeTreeNode(p)) // 移除p结点
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) {
                    if (oldVal != null) {
                        if (value == null)
                            // baseCount值减一
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }

说明:此函数对remove函数提供支持,remove函数底层是调用的replaceNode函数实现结点的删除。

扩容机制

/*
* 扩容后桶的大小总是2的幂次方
* 初始化容量:n=16   sizeCtl=12
* 第一次扩容:n=32   sizeCtl=24
* 第三次扩容:n=64   sizeCtl=48  n<=sizeCtl 退出扩容
*/
private final void tryPresize(int size) {
    // 扩大桶的大小,必须是2的幂次方
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
            tableSizeFor(size + (size >>> 1) + 1);
    int sc;
 
    /*
    * sizeCtl=0表示容器没有被初始化
    * sizeCtl>0表示容器已初始化,准备扩容
    */
    while ((sc = sizeCtl) >= 0) {
        Node<K,V>[] tab = table; int n;
        // 容器没有被初始化,准备初始化
        if (tab == null || (n = tab.length) == 0) {
            n = (sc > c) ? sc : c;
            if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        // 创建桶数组
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = nt;
                        // 设置扩容阈值
                        sc = n - (n >>> 2);
                    }
                } finally {
                    // 设置扩容阈值0.75*n
                    sizeCtl = sc;
                }
            }
        }
        else if (c <= sc || n >= MAXIMUM_CAPACITY)
            /* 
            * 当阈值大于需要扩容的大小时(初始化的 t = n << 1)、
            * 容器大于等于最大允许大小时成功,才退出。
            * 注意:这里的阈值不是下次需要扩容的大小,是这次扩容的阈值,它是跟初始扩大
            * 容量(n<<1)比较,小于则继续扩大容量(n<<1 sizeCtl=0.75*n)
            */
            break;
        else if (tab == table) {
            int rs = resizeStamp(n);
            if (sc < 0) {
                // 正在扩容中
                Node<K,V>[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                    // 扩容已经完成
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    /*
                    * 当前线程在扩容时发现已存在其他的线程正在执行扩容,
                    * 则参与进去扩容任务中,不同的线程分配不同的桶的迁移任务,
                    * 并使用内置锁来处理并发执行的情况
                    */
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                    (rs << RESIZE_STAMP_SHIFT) + 2))
                /*
                * 这里设置SIZECTL的值(rs << RESIZE_STAMP_SHIFT) + 2
                * 数组槽的容量最大值是(1 << 30)=1073741824
                * 当数组槽长度大于(1 << 15)=32767,就会出现负数
                */
                transfer(tab, null);
        }
    }
}
 
/*
* 扩容过程中,会把旧数组的数据迁移到扩容后新数组上
* 从右到左每次从旧数组迁移stride个桶数据到新数组
*/
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    // 计算每次迁移结点个数,不小于16
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating
        // 容器未初始化则初始化容器
        try {
            @SuppressWarnings("unchecked")
            // 初始化的时候扩容为原来两倍大小
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        // 临时交换数组
        nextTable = nextTab;
        // 设置迁移索引
        transferIndex = n;
    }
    int nextn = nextTab.length;
     
     /*
     * 这是一个空的标志节点,当数组结点为null或被转移之后就会把数组槽引用指向ForwardingNode结点
     */
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    // 是否全部转移标志
    boolean finishing = false; // to ensure sweep before committing nextTab
 
    /*
    * 会对旧数组槽进项两次全局检查:
    *  1、为所有的数组元素指向ForwardingNode对象引用
    *  2、提交前再次检查是否都符合第一条规则
    */
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
 
        /*
        * while循环主要设置transferIndex标志位,为了迁移旧数组结点
        */
        while (advance) {
            int nextIndex, nextBound;
            /*
            * 退出while循环:
            *  1:完成扩容
            *  2:当前线程完成自己负责的那部分区域
            */
            if (--i >= bound || finishing)
                advance = false;
            // 完成扩容
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                    (this, TRANSFERINDEX, nextIndex,
                            nextBound = (nextIndex > stride ?
                                    nextIndex - stride : 0))) {
                /*
                * 设置transferIndex-=stride,当transferIndex小于0则设为0
                * 从右到左迁移标志直到0索引位置
                */
 
                // 记录当前线程迁移哈希桶的最左边界
                bound = nextBound;
                // 记录当前线程迁移哈希桶的最大索引
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                // 完成扩容
                nextTable = null;
                // 设置新的数组槽
                table = nextTab;
                // 设置扩容阈值0.75*n
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                // 再次设置i,再次检查迁移是否完成,同时设置完成标志finishing为true
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            /*
            * 把数组槽中为null的元素设置为ForwardingNode结点
            * ForwardingNode结点的哈希码是MOVED(-1)
            */
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            // 当槽的引用的结点的哈希码是MOVED表明已经设置过了
            advance = true; // already processed
        else {
            // 加锁操作
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    // 原位置、新位置结点引用
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        int runBit = fh & n;
                        // 与上一个结点的(hash & n)值不同的最近结点
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                // 记录不同的结点位置和(hash & n)值
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            // 原结点标签结束的链表
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            // 新索引结点结束的链表
                            hn = lastRun;
                            ln = null;
                        }
 
                        /*
                        * 拆分的链表顺序与原链表结点顺序相反
                        */
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        // 原数组索引i指向ForwardingNode对象
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                    // 与HashMap实现原理相同
                    }
                }
            }
        }
    }
}

多线程并发扩容控制:

链表拆分:

详细描述扩容原理https://www.cnblogs.com/lfs2640666960/p/9621461.html

扩容时读写操作的处理

  • (1)对于get读操作,如果当前节点有数据,还没迁移完成,此时不影响读,能够正常进行。 如果当前链表已经迁移完成,那么头节点会被设置成fwd节点,此时get线程会帮助扩容。 
  • (2)对于put/remove写操作,如果当前链表已经迁移完成,那么头节点会被设置成fwd节点,此时写线程会帮助扩容,如果扩容没有完成,当前链表的头节点会被锁住,所以写线程会被阻塞,直到扩容完成。

总结

JDK1.8版本的CurrentHashMap的实现原理

JDK8中ConcurrentHashMap参考了JDK8 HashMap的实现,采用了数组 链表 红黑树的实现方式来设计,内部大量采用CAS操作,这里我简要介绍下CAS。

CAS是compare and swap的缩写,即我们所说的比较交换。cas是一种基于锁的操作,而且是乐观锁。在java中锁分为乐观锁和悲观锁。悲观锁是将资源锁住,等一个之前获得锁的线程释放锁之后,下一个线程才可以访问。而乐观锁采取了一种宽泛的态度,通过某种方式不加锁来处理资源,比如通过给记录加version来获取数据,性能较悲观锁有很大的提高。

CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存地址里面的值和A的值是一样的,那么就将内存里面的值更新成B。CAS是通过无限循环来获取数据的,若果在第一轮循环中,a线程获取地址里面的值被b线程修改了,那么a线程需要自旋,到下次循环才有可能机会执行。

JDK8中彻底放弃了Segment转而采用的是Node,其设计思想也不再是JDK1.7中的分段锁思想。

Node:保存key,value及key的hash值的数据结构。其中value和next都用volatile修饰,保证并发的可见性。

class Nodek,v

Java8 ConcurrentHashMap结构基本上和Java8的HashMap一样,不过保证线程安全性。

在JDK8中ConcurrentHashMap的结构,由于引入了红黑树,使得ConcurrentHashMap的实现非常复杂,我们都知道,红黑树是一种性能非常好的二叉查找树,其查找性能为O(logN),但是其实现过程也非常复杂,而且可读性也非常差,Doug

Lea的思维能力确实不是一般人能比的,早期完全采用链表结构时Map的查找时间复杂度为O(N),JDK8中ConcurrentHashMap在链表的长度大于某个阈值的时候会将链表转换成红黑树进一步提高其查找性能。

其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock + Segment + HashEntry,到JDK1.8版本中synchronized + CAS + HashEntry + 红黑树。

1.数据结构:取消了Segment分段锁的数据结构,取而代之的是数组 链表 红黑树的结构。JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了

2.保证线程安全机制:JDK1.7采用segment的分段锁机制实现线程安全,其中segment继承自ReentrantLock。JDK1.8采用CAS Synchronized保证线程安全。

3.锁的粒度:原来是对需要进行数据操作的Segment加锁,现调整为对每个数组元素加锁(Node)。JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)

4.链表转化为红黑树:定位结点的hash算法简化会带来弊端,Hash冲突加剧,因此在链表节点数量大于8时,会将链表转化为红黑树进行存储。JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档。

5.查询时间复杂度:从原来的遍历链表O(n),变成遍历红黑树O(logN)。

6.JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock,我觉得有以下几点

  1. 因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了
  2. JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然
  3. 在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据

参考文章:

https://www.cnblogs.com/zerotomax/p/8687425.html

https://www.cnblogs.com/banjinbaijiu/p/9147434.html

https://www.jianshu.com/p/865c813f2726

https://blog.csdn.net/dilixinxixitong2009/article/details/82630282

https://www.cnblogs.com/lfs2640666960/p/9621461.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值