带有tensorflow的jupyter notebook 就可以运行
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
def addlayer(inputs, insize, outsize, activefunction=None):
Weight = tf.Variable(tf.random_normal([insize, outsize]))
biases = tf.Variable(tf.zeros([1, outsize]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weight) + biases
if activefunction is None:
outputs = Wx_plus_b
else:
outputs = activefunction(Wx_plus_b)
return outputs
x_data = np.linspace(-1,1,300)[:, np.newaxis]
nosic = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data)- 0.5 + nosic
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
l1 = addlayer(xs, 1, 10, activefunction=tf.nn.relu)
prediction = addlayer(l1,10,1,activefunction=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
plt.show()
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i % 50 == 0:
# print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.1)
效果如下