动手学深度学习学习记录——多层感知机

本文介绍了ReLU、sigmoid和tanh三种常用的激活函数及其导数,展示了它们在神经网络中的作用。接着,通过从零开始和使用nn模块分别实现了多层感知机,并探讨了过拟合、欠拟合以及权重衰减在模型训练中的影响。最后,讨论了丢弃法对缓解梯度消失和爆炸问题的作用。
摘要由CSDN通过智能技术生成
  1. 激活函数

ReLU函数

x = torch.arange(-10, 10, 0.1, requires_grad = True)
y = torch.relu(x)

d2l.plot(x.detach(), y.detach(),'x', 'relu(x)',figsize=(7, 3.5))

ReLU函数的导数

y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of relu',figsize=(7,3.5))

sigmoid函数

y = torch.sigmoid(x)

d2l.plot(x.detach(), y.detach(),'x', 'sigmoid(x)',figsize=(7, 3.5))

sigmoid函数的导数

x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of sigmoid',figsize=(7,3.5))

Tanh函数

y = torch.tanh(x)

d2l.plot(x.detach(), y.detach(),'x', 'tanh(x)',figsize=(7, 3.5))

Tanh函数的导数

x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of tanh',figsize=(7,3.5))
  1. 多层感知机的从零开始实现

from torch import nn

batch_size = 256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)

实现一个具有单隐藏层的多层感知机,其包含256个隐藏单元

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(num_inputs,num_hiddens,requires_grad = True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens,requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens,num_outputs,requires_grad = True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs,requires_grad=True))

params = [W1, b1, W2, b2]

定义relu激活函数

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

定义模型

def net(X):
    X = X.reshape(-1, num_inputs)
    H = relu(X @ W1 + b1)
    return relu(H @ W2 + b2)

损失函数

loss = nn.CrossEntropyLoss(reduction='none')

训练

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params,lr = lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
  1. 多层感知机的简易实现

隐藏层 包含256个隐藏单元,并使用了ReLU激活函数

import torch
from d2l import torch as d2l
from torch import nn

net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784,256),
    nn.ReLU(),
    nn.Linear(256,10)
)

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight,std = 0.01)

net.apply(init_weights)

训练

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(),lr = lr)

train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net,train_iter, test_iter, loss, num_epochs, trainer)
  1. 模型选择、过拟合、欠拟合

通过一个多项式拟合来探索上述概念

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

使用下述三阶多项式来生成训练和测试数据的标签

max_degree = 20
n_train, n_test = 100, 100
true_w = np.zeros(max_degree)
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

前两个样本

true_w, features, poly_features, labels = [
    torch.tensor(x, dtype=torch.float32)
    for x in [true_w, features, poly_features, labels]]

features[:2], poly_features[:2, :], labels[:2]

实现一个函数以评估模型在给定数据集上的损失

def evaluate_loss(net, data_iter, loss):  
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]

定义训练函数

def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss()
    input_shape = train_features.shape[-1]
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1, 1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1, 1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(
                net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())

拟合(正态)

train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])

欠拟合

train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])

过拟合

train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)
  1. 权重衰减

权重衰减是最广泛使用的正则化的技术之一

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

初始化模型参数

def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]

定义L2范数惩罚

def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2

定义训练代码实现

def train(lambd):
    w, b = init_params()
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with torch.enable_grad():
                l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())

忽略正则化训练

使用权重衰减

权重衰减的简洁实现

def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))
    for param in net.parameters():
        param.data.normal_()
    loss = nn.MSELoss()
    num_epochs, lr = 100, 0.003
    trainer = torch.optim.SGD([{
        "params": net[0].weight,
        'weight_decay': wd}, {
            "params": net[0].bias}], lr=lr)
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with torch.enable_grad():
                trainer.zero_grad()
                l = loss(net(X), y)
            l.backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
  1. 丢弃法

实现drop_out函数

import torch
from d2l import torch as d2l
from torch import nn

def drop_out(X,dropout):
    assert 0 <= dropout <= 1
    if dropout == 1:
        return torch.zeros_like(X)
    if dropout == 0:
        return X
    mask = (torch.Tensor(X.shape).uniform_(0,1) > dropout).float()
    return mask * X /(1.0 - dropout)

测试一下

X = torch.arange(16,dtype = torch.float32).reshape((2,8))
print(X)
print(drop_out(X,0.))
print(drop_out(X,0.5))
print(drop_out(X,1.))

定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1 = 0.2
dropout2 = 0.5
class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True):
        super(Net,self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs,num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1,num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2,num_outputs)
        self.relu = nn.ReLU()

    def forward(self,X):
        H1 = self.relu(self.lin1(X.reshape((-1,self.num_inputs))))
        if self.training == True:
            H1 = drop_out(H1, dropout1)
        
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            H2 = drop_out(H2, dropout2)

        return self.lin3(H2)

训练

num_epochs, lr, batch_size = 15, 0.3, 256
loss = nn.CrossEntropyLoss()
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

简洁实现

net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(),
                    nn.Dropout(dropout1), nn.Linear(256, 256), nn.ReLU(),
                    nn.Dropout(dropout2), nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

训练

trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
  1. 数值稳定性和模型初始化

梯度消失

%matplotlib inline
import torch
from d2l import torch as d2l

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.sigmoid(x)
y.backward(torch.ones_like(x))

d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()],
         legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))

梯度爆炸

M = torch.normal(0, 1, size=(4, 4))
print('一个矩阵 \n', M)
for i in range(100):
    M = torch.mm(M, torch.normal(0, 1, size=(4, 4)))

print('乘以100个矩阵后\n', M)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值