基础知识

概率的定义:设E是随机试验,S是它的样本空间。对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率,其满足以下条件:
1、非负性:P(A)≥0
2、规范性:P(S)=1
3、可列可加性:对于i,j=1,2,…,i≠j时,AiAj=∅,则P(A1∪A2∪…)=P(A1)+P(A2)+…

性质:
1、A⊂B,则P(B-A)=P(B)-P(A)
2、P(A∪B)=P(A)+P(B)-P(AB)

古典概型:P(A)=m/n=A中包含样本点个数/样本点总数
几何概型:P(A)=SA/S

条件概率:P(B|A)=P(AB)/P(A)
乘法定理:P(AB)=P(B|A)P(A)

全概率公式:设试验E的样本空间为S,A为E的事件,B1,B2,…Bn为S的一个划分,则:
P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn)
即:P(A)=∑P(A|Bi)P(Bi) i=1,2,…,n

贝叶斯公式:设试验E的样本空间为S,A为E的事件,B1,B2,…Bn为S的一个划分,则:
P(Bi|A)=P(A|Bi)P(Bi)/∑P(A|Bj)P(Bj) j=1,2,…,n
证明:P(Bi|A)=P(BiA)/P(A)
=P(A|Bi)P(Bi)/∑P(A|Bj)P(Bj) j=1,2,…,n

AB两事件独立:P(AB)=P(A)P(B)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值