1、题目描述
整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。
例如,arr = [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。
整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地,如果数组的所有排列根据其字典顺序从小到大排列在一个容器中,那么数组的 下一个排列 就是在这个有序容器中排在它后面的那个排列。如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。
例如,arr = [1,2,3] 的下一个排列是 [1,3,2] 。
类似地,arr = [2,3,1] 的下一个排列是 [3,1,2] 。
而 arr = [3,2,1] 的下一个排列是 [1,2,3] ,因为 [3,2,1] 不存在一个字典序更大的排列。
给你一个整数数组 nums ,找出 nums 的下一个排列。
必须 原地 修改,只允许使用额外常数空间。
示例 1:
输入:nums = [1,2,3]
输出:[1,3,2]
示例 2:
输入:nums = [3,2,1]
输出:[1,2,3]
示例 3:
输入:nums = [1,1,5]
输出:[1,5,1]
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 100
2、思路
首先除了最大的排列之外,其他排列的下一个排列都是变大。所以,按照题目的要求获取下一个排列,就是获取大于当前排列的最小的数。
那么怎么让当前的排列增大的最小呢?
- 首先就是让变大的位尽量靠右,而后让其后的大于它的最小值来与这个位的数进行交换。
- 此时我们已经尽可能让变大的位靠右了,并且已经变大了,之后就需要把这个位后面的数变成最小,也就是将后面的值从小到大排序。
这样我们就获得了下一个排列。举个例子看看。
[1,1,3,6,5,4]
我们为了让这个位尽可能变大,从最后一位开始找。
4
之后显然没有元素了,不行
5
之后没有比它更大的元素了
6
也是没有
3
之后有,还不少,我们找其中最小的一个4
与3交换,得到
[1,1,4,6,5,3]
下面我们还需要让交换之后的后面的值按从小到大排列
[1,1,4,3,5,6]
这样就获得了下一个排列。
经过上面的演示,我们知道了我们需要的一个在其右侧有比它大的值的最右边的数字。我们从后向前找,如果从后向前存在一个逆序的(就像3,6)情况,我们就算找到了这个最右边的值。之后我们再从大于这个值的数中选择最小的数。
在上一步交换完之后,我们需要让交换之后的后面的值按照从小到大的顺序进行排列。我们设交换的两个位置为i,j,i < j。也就是说交换之前,num[i] < num[j],又由于n - 1 到 i + 1没有逆序,所以num[j - 1] > num[j] > num[j + 1],又因为num[j]是大于num[i]的最小值,所以num[i] > num[j + 1],所以交换之后,实际上n - 1到 i + 1是单调的。就像上面的[6,5,3]一样,所以最后不需要排序,只需要逆转下队列即可。
特殊情况
- 元素的数量小于3,直接reverse就完事。
- 如果从后往前没有逆序,则证明当前已经是最大的排列,也直接reverse即可
3、代码
class Solution {
public:
void nextPermutation(vector<int>& nums) {
// 长度小于2,直接reverse即可
if(nums.size() <= 2) { reverse(nums.begin(),nums.end()); return; }
int i = nums.size() - 2;
// 找到第一个逆序的元素
while(i >= 0 && nums[i] >= nums[i + 1]) i --;
// 如果没有逆序的元素,也就是当前的排列已经是最大排列,则直接逆序即可得到下一个排列
if(i < 0) { reverse(nums.begin(),nums.end()); return; }
int j = nums.size() - 1;
// 找到第一个大于nums[i]的数字,并将二者交换
while(nums[j] <= nums[i]) j --;
swap(nums[j],nums[i]);
// 反转交换完的剩下的部分,就可以
reverse(nums.begin() + i + 1,nums.end());
}
};
时间复杂度 O ( n ) O(n) O(n)
参考资料
https://leetcode-cn.com/problems/next-permutation/solution/xia-yi-ge-pai-lie-by-leetcode-solution/