[LeetCode] 628. 三个数的最大乘积

1 题目描述

给定一个整型数组,在数组中找出由三个数组成的最大乘积,并输出这个乘积。

示例 1:

输入: [1,2,3]
输出: 6
示例 2:

输入: [1,2,3,4]
输出: 24
注意:

给定的整型数组长度范围是[3,104],数组中所有的元素范围是[-1000, 1000]。
输入的数组中任意三个数的乘积不会超出32位有符号整数的范围。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-product-of-three-numbers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2 解题思路

解决方法:排序

将数组进行升序排序,如果数组中所有的元素都是非负数,那么答案即为最后三个元素的乘积。

如果数组中出现了负数,那么我们还需要考虑乘积中包含负数的情况,显然选择最小的两个负数和最大的一个正数是最优的,即为前两个元素与最后一个元素的乘积。

上述两个结果中的较大值就是答案。注意我们可以不用判断数组中到底有没有正数,0 或者负数,因为上述两个结果实际上已经包含了所有情况,最大值一定在其中。

作者:LeetCode
链接:https://leetcode-cn.com/problems/maximum-product-of-three-numbers/solution/san-ge-shu-de-zui-da-cheng-ji-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

3 解决代码

  • Java 代码
class Solution(object):
    def maximumProduct(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        nums.sort()
        return max(nums[-1] * nums[-2] * nums[-3], nums[0]*nums[1]*nums[-1])
  • python 代码
class Solution(object):
    def maximumProduct(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        nums.sort()
        return max(nums[-1] * nums[-2] * nums[-3], nums[0]*nums[1]*nums[-1])
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组,一个生器和一个判别器,它们相互竞争,生器生据,判别器评估据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函。 9. **损失函(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的就,但它也面临着一些挑战,如对大量据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值