1370C Number Game (1400)

14 篇文章 0 订阅
1 篇文章 0 订阅
本文探讨了在算法竞赛中使用博弈论解决特定问题的策略。通过分析数字N的操作博弈,阐述了当N为奇数或等于2时,A方(Ashishgup)获胜的条件,以及在N为偶数且满足特定条件下A方仍能取胜的策略。代码实现展示了如何通过寻找N的最大奇数因数来判断胜负。
摘要由CSDN通过智能技术生成

1370C
题意:
A和F博弈,给一个数字N,可以做一下两种操作:

  1. if(N>1)N--;
  2. if(x%2==1 && N%x==0 && N>1 && x>1)N/=x;

不能进行操作的人会输,A先手

思路:
可以看出来,如果N>1&&(N&1)或者N==2,A能赢;如果N是偶数,但是N除以它的最大的奇数(大于1)的值大于2的话,A能赢;其他情况F会赢

代码附:

#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e5+10;
signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int t,n;
    cin>>t;
    while(t--)
    {
        cin>>n;
        if((n&1)||n==2)
        {
            if(n>1)
                cout<<"Ashishgup"<<endl;
            else
                cout<<"FastestFinger"<<endl;
            continue;
        }
        int k=0;
        for(int i=2; i*i<=n; i++)
        {
            if(n%i==0)
            {
                if(i&1)k=i;
                if((n/i)&1)k=n/i;
            }
        }
        if(k==0||n/k==2)
            cout<<"FastestFinger"<<endl;
        else
            cout<<"Ashishgup"<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值