【推荐】排序模型的评价指标nDCG
介绍
nDCG(Normalized Discounted Cumulative Gain)
归一化折损累计增益是一种用于评估排序模型性能的指标,它考虑了两个方面:排序的正确性和相关性的程度。
学习nDCG
按照Gain
、CG
、DCG
、iDCG
、nDCG
这个顺序来学习。
假设现在你有一个标签序列:
A | B | C | D | |
---|---|---|---|---|
打分数据集 | 3 | 2 | 1 | 0 |
点击数据集 | 1 | 0 | 1 | 0 |
如果是打分数据集,那么A分数最高(3),D最低(0),这样真实顺序为ABCD;
如果是点击数据集,那么AC分数有(1),BD无(0),这样标签为AC,顺序无所谓;
增益Gain
增益Gain
就表示第i个标签位置的得分。这里
r
e
l
(
i
)
rel(i)
rel(i)表示分数,这个分数到底是什么?分数是什么什么取决于数据集的对应位置存的是什么。
G a i n = r e l ( i ) Gain= rel(i) Gain=rel(i)
如果是用的是推荐的显示反馈,也就是打分数据集(1-5分),那么这个1-5的打分就是计算时要用的分数。如果用的隐式反馈,也就是用户点击数据集,那这个分数就是0-1。1表示用户点击过,0表示未点击过。
那么在上面举例中:在打分数据集,可以说标签A的增益为3、B为2……
累计增益 CG
累计增益 CG
表示前k个位置累计得到的效益。CG
必须要指定topk中的k才可以计算,不然在不同的情况下,A用户有100个标签、B用户只有10个标签,这样去统计CG
就没意义了。
C G @ k = ∑ i = 1 k r e l ( i ) CG@k = \sum_{i=1}^{k} rel(i) CG@k=i=1∑krel(i)
那么在上面举例中:在打分数据集,如果标签为[A,B,C,D]或[B,A,C,D],CG@2 = 5
。所以,顺序不影响CG
得分。如果我们想评估不同顺序的影响,就需要使用另一个指标DCG
来评估。
折损累计增益 DCG
CG
只是单纯累加相关性,不考虑位置信息。考虑排序顺序的因素,使得排名靠前的item增益更高,对排名靠后的item进行折损。CG
与顺序无关,而DCG
评估了顺序的影响。DCG
的思想是:list中item的顺序很重要,不同位置的贡献不同,一般来说,排在前面的item影响更大,排在后面的item影响较小。
D C G @ k = ∑ i = 1 k r e l ( i ) log 2 ( i + 1 ) DCG@k = \sum_{i=1}^{k} \frac{rel(i)}{\log_2(i+1)} DCG@k=i=1∑klog2(i+1)rel(i)
那么在上面举例中:在打分数据集,如果标签为[A,B,C,D]:DCG@2 = 3/log(2) + 2/log(3) = 6.149
;如果标签为[B,A,C,D]:DCG@2 = 2/log(2) + 3/log(3) = 5.616
;我们发现肯定是越靠近原始标签顺序,折损累计增益越大。
理想折损累计增益 IDCG
IDCG
是指理想情况下的DCG
,即DCG
取得最大值的情况,就是数据集中的顺序。公式为:
I D C G @ k = ∑ i = 1 ∣ R E L ∣ r e l ( i ) log 2 ( i + 1 ) IDCG@k = \sum_{i=1}^{|REL|} \frac{rel(i)}{\log_2(i+1)} IDCG@k=i=1∑∣REL∣log2(i+1)rel(i)
它和DCG
没区别,只是DCG
算的是模型预测出来的标签顺序去算分,IDCG
算的是数据集中的真实标签顺序去算分,所以DCG
不可能比IDCG
大。
归一化折损累计增益 nDCG
除以IDCG
,把分数约束到[0,1]。
n D C G @ k = D C G @ k I D C G @ k nDCG@k = \frac{DCG@k}{IDCG@k} nDCG@k=IDCG@kDCG@k
计算举例
假如现在模型对标签A-B-C-D
预测的分数是[0.111, 0.222, 0.001, 0.10]
那么要对分数排个序即[0.222, 0.111, 0.10, 0.001]
那么模型预测出来的标签顺序为B-A-D-C
模型预测出来的标签顺序B-A-D-C
在数据集里面的评分是[2, 3, 0, 1]
nDGC@3 = [2/log(2) + 3/log(3) + 0/log(4)] / [3/log(2) + 2/log(3) + 1/log(4)] = 0.8174935137996165