二分法查找

LeetCode704 二分查找

一直以来,都以为二分法很简单,但昨天一写代码就出问题,感觉还是理解得不够透彻。

二分查找

难度:简单

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1

提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。

二分法可以有两种写法,定义区间不同,写法不同。值得注意的是,此区间在循环过程中保持不变,即mid改变,但区间性质不变。

  1. target位于左闭右闭 []区间内

    此时,low==high可以成立
    在这里插入图片描述

    假设target 为2,则下一步,high = mid - 1(保持闭区间,且无需再次查找mid处)
    在这里插入图片描述

    同理,low = mid + 1

    故用Java实现

    class Solution {
        public int search(int[] nums, int target) {
             int low = 0, high = nums.length - 1;
             while (low <= high){
                 int mid = low + (high-low)/2;
                 if( nums[mid] == target){
                     return mid;
                 }
                 else if( nums[mid] > target){
                     high = mid - 1;
                 }
                 else if (nums[mid] < target){
                     low = mid + 1;
                 }
             }
             return -1;
        }
    
  2. target位于左闭右开 []区间内

    此时,low==high无意义,因为high本身并不在区间内。
    在这里插入图片描述

    假设target 为2,则下一步,high = mid (保持左闭右开区间,且无需再次查找mid处)
    在这里插入图片描述

    但由于左侧为闭区间,则low = mid + 1

    故用Java实现

    class Solution {
        public int search(int[] nums, int target) {
             int low = 0, high = nums.length;
             while (low < high){
                 int mid = low + (high-low)/2;
                 if( nums[mid] == target){
                     return mid;
                 }
                 else if( nums[mid] > target){
                     high = mid;
                 }
                 else if (nums[mid] < target){
                     low = mid + 1;
                 }
             }
             return -1;
        }
    }
    

LeetCode 35 搜索插入位置

35. 搜索插入位置
难度:简单
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。nums为无重复元素升序排列数组
请必须使用时间复杂度为 O(log n) 的算法。

插入位置分四种情况。target在所有元素之前,target恰在数组中,target在数组元素之间,target在所有元素之后。

  1. 暴力解法
class Solution {
    public int searchInsert(int[] nums, int target) {
        for (int i = 0;i < nums.length;i++){
            if(nums[i] >= target){
                return i;  //因数组升序,故一旦大于target,便可插入当前位置。
            }
        }
        return nums.length;
    }
}
  1. 二分查找
class Solution {
    public int searchInsert(int[] nums, int target) {
        int low = 0, high = nums.length - 1;
        while(low <= high){
            int mid = low + ((high-low)>>1); //此处若采取移位运算,必须带括号
            if(target == nums[mid]){
                return mid;
            }
            else if(target > nums[mid]){
                low = mid + 1;
            }
            else if(target < nums[mid]){
                high = mid - 1;
            }
        }
        return high + 1; //计算可知,其余三种情况皆可由high+1解出
    }
}

LeetCode 278 第一个错误的版本

278.第一个错误的版本
错误的版本之后的所有版本都是错的。假设你有 n 个版本 [1, 2, …, n],你想找出导致之后所有版本出错的第一个错误的版本。你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。

/* The isBadVersion API is defined in the parent class VersionControl.
      boolean isBadVersion(int version); */

public class Solution extends VersionControl {
    public int firstBadVersion(int n) {
        int low = 1, high = n;
        while(low < high){
            int mid = low + ((high-low)>>1);
            if(!isBadVersion(mid)){
                low = mid + 1;
            }
            else if(isBadVersion(mid)){
                high = mid;
            }
        }
        return low;
    }
}

LeetCode 69 Sqrt(x)

69.Sqrt(x)
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

class Solution {
    public int mySqrt(int x) {
        int low = 0, high = x;
        int res = -1;
        while(low <= high){
            int mid = low + (high-low)/2;
            if((long)mid * mid <= x){
                res = mid;
                low = mid + 1;
            }else{
                high = mid - 1;
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值