LeetCode704 二分查找
一直以来,都以为二分法很简单,但昨天一写代码就出问题,感觉还是理解得不够透彻。
难度:简单
给定一个
n个元素有序的(升序)整型数组nums和一个目标值target,写一个函数搜索nums中的target,如果目标值存在返回下标,否则返回-1。提示:
- 你可以假设
nums中的所有元素是不重复的。n将在[1, 10000]之间。nums的每个元素都将在[-9999, 9999]之间。
二分法可以有两种写法,定义区间不同,写法不同。值得注意的是,此区间在循环过程中保持不变,即mid改变,但区间性质不变。
-
target位于左闭右闭 []区间内
此时,low==high可以成立

假设target 为2,则下一步,high = mid - 1(保持闭区间,且无需再次查找mid处)

同理,low = mid + 1
故用Java实现
class Solution { public int search(int[] nums, int target) { int low = 0, high = nums.length - 1; while (low <= high){ int mid = low + (high-low)/2; if( nums[mid] == target){ return mid; } else if( nums[mid] > target){ high = mid - 1; } else if (nums[mid] < target){ low = mid + 1; } } return -1; } -
target位于左闭右开 []区间内
此时,low==high无意义,因为high本身并不在区间内。

假设target 为2,则下一步,high = mid (保持左闭右开区间,且无需再次查找mid处)

但由于左侧为闭区间,则low = mid + 1
故用Java实现
class Solution { public int search(int[] nums, int target) { int low = 0, high = nums.length; while (low < high){ int mid = low + (high-low)/2; if( nums[mid] == target){ return mid; } else if( nums[mid] > target){ high = mid; } else if (nums[mid] < target){ low = mid + 1; } } return -1; } }
LeetCode 35 搜索插入位置
35. 搜索插入位置
难度:简单
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。nums为无重复元素的升序排列数组
请必须使用时间复杂度为O(log n)的算法。
插入位置分四种情况。target在所有元素之前,target恰在数组中,target在数组元素之间,target在所有元素之后。
- 暴力解法
class Solution {
public int searchInsert(int[] nums, int target) {
for (int i = 0;i < nums.length;i++){
if(nums[i] >= target){
return i; //因数组升序,故一旦大于target,便可插入当前位置。
}
}
return nums.length;
}
}
- 二分查找
class Solution {
public int searchInsert(int[] nums, int target) {
int low = 0, high = nums.length - 1;
while(low <= high){
int mid = low + ((high-low)>>1); //此处若采取移位运算,必须带括号
if(target == nums[mid]){
return mid;
}
else if(target > nums[mid]){
low = mid + 1;
}
else if(target < nums[mid]){
high = mid - 1;
}
}
return high + 1; //计算可知,其余三种情况皆可由high+1解出
}
}
LeetCode 278 第一个错误的版本
278.第一个错误的版本
错误的版本之后的所有版本都是错的。假设你有 n 个版本 [1, 2, …, n],你想找出导致之后所有版本出错的第一个错误的版本。你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
/* The isBadVersion API is defined in the parent class VersionControl.
boolean isBadVersion(int version); */
public class Solution extends VersionControl {
public int firstBadVersion(int n) {
int low = 1, high = n;
while(low < high){
int mid = low + ((high-low)>>1);
if(!isBadVersion(mid)){
low = mid + 1;
}
else if(isBadVersion(mid)){
high = mid;
}
}
return low;
}
}
LeetCode 69 Sqrt(x)
69.Sqrt(x)
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
class Solution {
public int mySqrt(int x) {
int low = 0, high = x;
int res = -1;
while(low <= high){
int mid = low + (high-low)/2;
if((long)mid * mid <= x){
res = mid;
low = mid + 1;
}else{
high = mid - 1;
}
}
return res;
}
}
6189

被折叠的 条评论
为什么被折叠?



