[论文笔记] Dual-Channel Span for Aspect Sentiment Triplet Extraction

本文介绍了一种新方法Dual-Span,通过利用句法依赖和词性信息减少ASTE任务中的噪声和计算成本。实验结果表明,该模型在多个数据集上超越现有方法,证明了其在情感三元组抽取中的有效性。
摘要由CSDN通过智能技术生成

一种利用句法依赖和词性相关性信息来过滤噪声(无关跨度)的基于span方法。

会议EMNLP 2023
作者Pan Li, Ping Li, Kai Zhang
团队Southwest Petroleum University
论文地址https://aclanthology.org/2023.emnlp-main.17/
代码地址https://github.com/bert-ply/Dual_Span/tree/master
简介一种基于span双通道的情感三元组抽取模型

Task

方面级情感分析(ABSA)中的一项子任务(情感三元组抽取,ASTE)。
image.png
图1. ASTE 任务中带有依存树和词性的句子

Problem

在ASTE任务中采用跨度交互的方式已被证明能为模型带来不错的收益。然而,基于span的方法最大的一个问题是它们通常会枚举句子中所有的span,这样会带来非常大的计算成本和噪声。具体来说,长度为n的句子的枚举跨度数量是 o ( n 2 ) o(n^2) o(n2),而在后期跨度配对阶段,所有意见和方面候选跨度之间可能的交互数量为 o ( n 4 ) o(n^4) o(n4),这意味着绝大多数的跨度都是无效的。此外,大多数现有的基于跨度的方法都对两个跨度之间的直接交互进行建模,而高阶交互作用被忽视。
为了解决以上问题,作者对跨度中的语言现象进行了探讨:

  • 在语法依赖树方面,由多个单词组成的aspect或opinion跨度在语法上是依赖的,并且多重依赖关系可以在跨度之间传递高阶交互。
  • 在词性方面,aspect和opinion存在一些常见的情况,如:aspect通常是名词(N)或名词短语(NN-NN),而opinion通常是形容词(JJ)。

Contributions

  • 提出了一种新的跨度生成方法,通过利用句法依赖关系和词性特征之间的相关性,显著减少了跨度候选的数量,从而降低了计算成本和噪声。
  • 通过构建基于句法依赖和词性关系的图注意力网络(RGAT),模型能够捕获跨度/单词之间的高阶语言特征交互,增强了跨度表示。
  • 两个公共数据集上的广泛实验表明,Dual-Span模型在ASTE任务上超越了所有现有的最先进方法,证明了其有效性和优越性。

Methodology

Sentence Encoding

本文采用了两种句子编码方法:

  • GloVe+BiLSTM
  • BERT

其实只做进行BERT版本即可,可能是为了与借鉴的Span-ASTE对比(也采用了这两种编码方法)。

Feature Enhancing Module

如上所述,跨度(或跨度内单词)涉及句法依赖性和词性相关性,因此将这些信息合并到特征表示中可能有利于跨度配对和情感预测。
为了捕获高阶依赖关系,这里我们设计了一种基于图神经网络的方法来对高阶跨度内和跨度的句法依赖关系和词性关系进行编码。具体来说,我们构建了词性关系图(对应于图3(b)所示的多关系矩阵)。然后,我们应用两个关系图注意网络分别学习所讨论句子的句法依存树和构建的词性图上单词之间的高阶交互。

Part-of-speech And Syntactic Dependency Graph Construction

利用斯坦福的CoreNLP来完成句法依赖和词性的标注
image.png
图2. ASTE 任务中一个句法依存树和词性邻接矩阵的例句
G S y n = ( V , R S y n ) G^{Syn}=(V,R^{Syn} ) GSyn=(V,RSyn) G P o s = ( V , R P o s ) G^{Pos}=(V,R^{Pos} ) GPos=(V,RPos)分别表示句法依存图和词性图,索引为i的词与索引为j的词之间的关系向量分别为 r i , j s r^{s}_{i,j} ri,js r i , j p r^{p}_{i,j} ri,jp

High-order Feature Learning with Relational Graph Attention Network

image.png
图3. Dual-Span的模型架构图
在构建好句法依赖图和词性图之后,作者构建了两个关系图注意力网络(RGAT):SynGAT和PosGAT,分别用来捕获句法依赖图和词性图的语言特征。
对于第 i i i个节点,更新过程如下:
image.png
其中 Z Z Z表示注意力头的数量, h i s y n ( l ) h^{syn}_i(l) hisyn(l) h i p o s ( l ) h^{pos}_i(l) hipos(l)表示第 l l l层数第 i i i个节点的表示向量, N ( i ) N(i) N(i)表示与 i i i直接相邻的节点集。
为了融合句法依赖和词性关系特征,作者引入了一种门机制:
image.png

Dual-Channel Span Generation

前面通过R-GAT完成了句法依存和词性信息的融合,接下来就是进行span的枚举了。这里的span枚举有两种方式。

Syntactic Span Generation

只枚举索引为 i i i的词与索引为 j j j的词之间存在依赖边或关系( e i , j = 1 e_{i,j}=1 ei,j=1),且 i i i j j j之间的距离小于 L s L_s Ls,则认为索引 i i i到索引 j j j之间的所有的词是一个span。
image.png
其中, f w i d t h ( i , j ) f_{width}(i,j) fwidth(i,j)是一个可训练的embedding。

Part-of-speech Span Generation

只枚举出所有的名词和形容词, ( k , l ) (k,l) (k,l)中每个词都是NN或者JJ,则 k k k l l l之间的所有词是一个span。
image.png
其中, f w i d t h ( k , l ) f_{width}(k,l) fwidth(k,l)是一个可训练的embedding。

最终将两种枚举方案种的span进行取并集,得到最终的span候选集:
S = S i , j s y n ∪ S k , l p o s S = S^{syn}_{i,j}∪S^{pos}_{k,l} S=Si,jsynSk,lpos

Span Classification

获得span候选集 S S S后,通过利用两个辅助任务(即 ATE 和 OTE 任务)进一步缩小可能的跨度池。相当于对每个span做一个三分类任务:{Aspect, Opinion, Invalid}
image.png
预测为Aspect或Opinion的span并不是全部都作为候选的Aspect或Opinion,而是分别取出tok nz个作为Aspect候选span和Opinion候选span。(做法与Span-ASTE一致)

Triplet Module

对候选的aspect和opinion进行两两配对,配对之后的跨度对的向量表示:
image.png
f d i s t a n c e ( a , b , c , d ) f_{distance}(a,b,c,d) fdistance(a,b,c,d)是一个可训练的embedding, r a b , c d s r^{s}_{ab,cd} rab,cds为词a、b与词c、d之间的依赖关系表示向量做一个均值操作。
接下来对每个配对之后的pair进行4分类:{Positive, Negative, Neutral, Invalid}:
image.png

Training objective

训练的损失函数定义为跨度分类和三元组模块中跨度对分类的负对数似然之和:
image.png

Experiments

Dataset

ASTE-Data-v1和ASTE-Data-v2,所有数据集均基于 SemEval 挑战(Pontiki 等人,2014、2015、2016),并包含笔记本电脑和餐厅领域的评论。
image.png
图4. ASTE两个数据集的想详细统计结果

Main Results

image.png
图5. ASTE-Data-v1数据集的主要结果
image.png
图6. ASTE-Data-v2数据集的主要结果

  • 性能提升: Dual-Span模型在四个公共数据集(Lap14, Res14, Res15, Res16)上进行了广泛的实验,实验结果表明,该模型在F1分数上一致超越了所有现有的最先进方法。这证明了Dual-Span在ASTE任务上的有效性和优越性。
  • 句法结构的利用: 在基于标签的端到端方法中,那些利用句子句法结构的方法(如S3E2, MTDTN和EMC-GCN)通常比仅学习标签信息的方法(如OTE-MTL, GTS和JET)表现得更好,这表明句法特征对于三元组表示是有意义的。

Ablation Study

image.png
图7. 消融实验的结果
通过消融研究,论文进一步验证了Dual-Span中各个组件的有效性。移除句法图注意力网络(SynGAT)、词性图注意力网络(PosGAT)或两者都移除(Dual-RGAT)都会导致性能下降,这表明模型的每个部分都对最终的ASTE任务性能有贡献。

Effectiveness of Dual-Span in Span Generation

image.png
图8. ATE和OTE任务在数据集D2上的实验结果
在 ATE 任务上,Dual-Span 始终优于 Span-ASTE 和 GTS,这表明基于句法和词性相关性的候选缩减和表示对于方面术语识别是有效的。然而,在 OTE 任务上,模型在大多数基准数据集上略逊于 Span-ASTE,这是由较低的 P(precision)值引起的。可能是因为作者只考虑涉及用 JJ或NN 标记的单词的跨度。但是,意见术语可以用 VBN 标记,但他们没有被包括在内。
image.png
图9. 在D2数据集上生成span耗时(秒)的实验结果
Dual-Span模型通过双通道跨度生成策略显著减少了计算成本,实验结果显示,与Span-ASTE相比,Dual-Span在生成跨度的时间消耗上减少了一半。

Conclusion

  • Dual-Span模型通过利用句法关系和词性特征来改进ASTE任务的性能。
  • 实验结果表明,该方法在ASTE和ATE任务上相比所有基线方法都有显著提升。
  • 论文指出,对于OTE任务,Dual-Span通常不如枚举所有可能跨度的简单跨度基方法。
Bert是一种在自然语言处理中被广泛使用的模型,其在各种任务中表现出了出色的性能。然而,对于方面级情感分析,Bert并不直接适用。因此,需要对Bert进行利用,并通过修改和扩展来适应这一任务。 端到端(end-to-end)的方面级情感分析是指通过一个模型直接从文本中提取方面和情感信息。为了利用Bert进行端到端的方面级情感分析,首先需要对数据进行预处理,并将其转换成Bert模型所接受的输入格式。这包括将文本分段、添加特殊标记以及填充序列等操作。 在Bert模型的基础上,需要添加相关的层来实现方面级情感分析。一种常见的方法是利用注意力机制来捕获方面词与其他词之间的关系。通过计算不同词之间的注意力权重,可以将方面词的相关信息传递给其他词,从而更好地理解整个文本。另外,也可以添加一些分类层来预测每个方面的情感。 为了更好地利用Bert,还可以使用领域特定的语料库来进行预训练。通过在大规模的语料库上进行预训练,模型可以更好地理解特定领域的文本,并提升方面级情感分析的性能。 此外,还可以通过调整Bert模型的超参数来进一步改善性能。例如,可以调整学习率、批大小和训练周期等超参数,以获得更好的结果。 总之,“exploiting bert for end-to-end aspect-based sentiment analysis”意味着通过对Bert进行修改和扩展,将其应用于端到端的方面级情感分析任务中,以提升模型的性能和效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codewen77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值