一种利用句法依赖和词性相关性信息来过滤噪声(无关跨度)的基于span方法。
会议 | EMNLP 2023 |
---|---|
作者 | Pan Li, Ping Li, Kai Zhang |
团队 | Southwest Petroleum University |
论文地址 | https://aclanthology.org/2023.emnlp-main.17/ |
代码地址 | https://github.com/bert-ply/Dual_Span/tree/master |
简介 | 一种基于span双通道的情感三元组抽取模型 |
Task
方面级情感分析(ABSA)中的一项子任务(情感三元组抽取,ASTE)。
图1. ASTE 任务中带有依存树和词性的句子
Problem
在ASTE任务中采用跨度交互的方式已被证明能为模型带来不错的收益。然而,基于span的方法最大的一个问题是它们通常会枚举句子中所有的span,这样会带来非常大的计算成本和噪声。具体来说,长度为n的句子的枚举跨度数量是 o ( n 2 ) o(n^2) o(n2),而在后期跨度配对阶段,所有意见和方面候选跨度之间可能的交互数量为 o ( n 4 ) o(n^4) o(n4),这意味着绝大多数的跨度都是无效的。此外,大多数现有的基于跨度的方法都对两个跨度之间的直接交互进行建模,而高阶交互作用被忽视。
为了解决以上问题,作者对跨度中的语言现象进行了探讨:
- 在语法依赖树方面,由多个单词组成的aspect或opinion跨度在语法上是依赖的,并且多重依赖关系可以在跨度之间传递高阶交互。
- 在词性方面,aspect和opinion存在一些常见的情况,如:aspect通常是名词(N)或名词短语(NN-NN),而opinion通常是形容词(JJ)。
Contributions
- 提出了一种新的跨度生成方法,通过利用句法依赖关系和词性特征之间的相关性,显著减少了跨度候选的数量,从而降低了计算成本和噪声。
- 通过构建基于句法依赖和词性关系的图注意力网络(RGAT),模型能够捕获跨度/单词之间的高阶语言特征交互,增强了跨度表示。
- 两个公共数据集上的广泛实验表明,Dual-Span模型在ASTE任务上超越了所有现有的最先进方法,证明了其有效性和优越性。
Methodology
Sentence Encoding
本文采用了两种句子编码方法:
- GloVe+BiLSTM
- BERT
其实只做进行BERT版本即可,可能是为了与借鉴的Span-ASTE对比(也采用了这两种编码方法)。
Feature Enhancing Module
如上所述,跨度(或跨度内单词)涉及句法依赖性和词性相关性,因此将这些信息合并到特征表示中可能有利于跨度配对和情感预测。
为了捕获高阶依赖关系,这里我们设计了一种基于图神经网络的方法来对高阶跨度内和跨度的句法依赖关系和词性关系进行编码。具体来说,我们构建了词性关系图(对应于图3(b)所示的多关系矩阵)。然后,我们应用两个关系图注意网络分别学习所讨论句子的句法依存树和构建的词性图上单词之间的高阶交互。
Part-of-speech And Syntactic Dependency Graph Construction
利用斯坦福的CoreNLP来完成句法依赖和词性的标注
图2. ASTE 任务中一个句法依存树和词性邻接矩阵的例句
G S y n = ( V , R S y n ) G^{Syn}=(V,R^{Syn} ) GSyn=(V,RSyn)和 G P o s = ( V , R P o s ) G^{Pos}=(V,R^{Pos} ) G